This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. How can we come to terms with the complex social impact of new cutting-edge fields like synthetic biology, robotics, genetics and
machine learning? In order to manage these transformative changes, people not only need to understand science and technology, but also to actively participate in shaping a world where our ability to control the building blocks of life and cognition is vastly expanded. The Transmedia Museum will use the interactive, engaging nature of
In the last decade, social studies of nanotechnology have been characterized by a specific focus on the role of communication and cultural representations. Scholars have documented a proliferation of the forms through which this research area has been represented, communicated and debated within different social contexts. This Jcom section concentrates on the proliferation of cultural spaces where nanotechnologies are articulated and shaped in society. The intent is that of showing how these different cultural spaces — with their specific features and implications — raise multiple issues and
This paper provides a brief overview of the ideas and principles underlying the connected learning movement, highlighting examples of how libraries are boosting 21st-century learning and promoting community development by partnering with a range of organisations and individuals to incorporate connected opportunities into their programmes. The connected learning movement supports interest-driven, peer-supported, and academically oriented learning for youth by promoting the core values of equity, participation, and social connection. By connecting formal and informal learning organisations with
Making Stuff Season Two is designed to build on the success of the first season of Making Stuff by expanding the series content to include a broader range of STEM topics, creating a larger outreach coalition model and a “community of practice,” and developing new outreach activities and digital resources. Specifically, this project created a national television 4-part miniseries, an educational outreach campaign, expanded digital content, promotion activities, station relations, and project evaluation. These project components help to achieve the following goals: 1. To increase public understanding that basic research leads to technological innovation; 2. To increase and sustain public awareness and excitement about innovation and its impact on society; and 3. To establish a community of practice that enhances the frequency and quality of collaboration among STEM researchers and informal educators. These goals were selected in order to address a wider societal issue, and an important element of the overall mission of NOVA: to inspire new generations of scientists, learners, and innovators. By creating novel and engaging STEM content, reaching out to new partners, and developing new outreach tools, the second season of Making Stuff is designed to reach new target audiences including underserved teens and college students crucial to building a more robust and diversified STEM workforce pipeline. Series Description: In this four-part special, technology columnist and best-selling author David Pogue takes a wild ride through the cutting-edge science that is powering a next wave of technological innovation. Pogue meets the scientists and engineers who are plunging to the bottom of the temperature scale, finding design inspiration in nature, and breaking every speed limit to make tomorrow's "stuff" "Colder," "Faster," "Safer," and "Wilder." Making Stuff Faster Ever since humans stood on two feet we have had the basic urge to go faster. But are there physical limits to how fast we can go? David Pogue wants to find out, and in "Making Stuff Faster," he’ll investigate everything from electric muscle cars and the America’s cup sailboat to bicycles that smash speed records. Along the way, he finds that speed is more than just getting us from point A to B, it's also about getting things done in less time. From boarding a 737 to pushing the speed light travels, Pogue's quest for ultimate speed limits takes him to unexpected places where he’ll come face-to-face with the final frontiers of speed. Making Stuff Wilder What happens when scientists open up nature's toolbox? In "Making Stuff Wilder," David Pogue explores bold new innovations inspired by the Earth's greatest inventor, life itself. From robotic "mules" and "cheetahs" for the military, to fabrics born out of fish slime, host David Pogue travels the globe to find the world’s wildest new inventions and technologies. It is a journey that sees today's microbes turned into tomorrow’s metallurgists, viruses building batteries, and ideas that change not just the stuff we make, but the way we make our stuff. As we develop our own new technologies, what can we learn from billions of years of nature’s research? Making Stuff Colder Cold is the new hot in this brave new world. For centuries we've fought it, shunned it, and huddled against it. Cold has always been the enemy of life, but now it may hold the key to a new generation of science and technology that will improve our lives. In "Making Stuff Colder," David Pogue explores the frontiers of cold science from saving the lives of severe trauma patients to ultracold physics, where bizarre new properties of matter are the norm and the basis of new technologies like levitating trains and quantum computers. Making Stuff Safer The world has always been a dangerous place, so how do we increase our odds of survival? In "Making Stuff Safer," David Pogue explores the cutting-edge research of scientists and engineers who want to keep us out of harm’s way. Some are countering the threat of natural disasters with new firefighting materials and safer buildings. Others are at work on technologies to thwart terrorist attacks. A next-generation vaccine will save millions from deadly disease. And innovations like smarter cars and better sports gear will reduce the risk of everyday activities. We’ll never eliminate danger—but science and technology are making stuff safer.
DATE:
-
TEAM MEMBERS:
WGBH Educational FoundationPaula Apsell
The range of contemporary "emerging" technologies with far-reaching implications for society (economic, social, ethical, etc.) is vast, encompassing such areas as bioengineering, robotics and artificial intelligence, genetics, neuro and cognitive sciences, and synthetic biology. The pace of development of these technologies is in full gear, where the need for public understanding, engagement and active participation in decision-making is great. The primary goal of this four-year project is to create, distribute and study a set of three integrated activities that involve current and enduring science-in-society themes, building on these themes as first presented in Mary Shelley's novel, Frankenstein, which will be celebrating in 2018 the 200th anniversary of its publication in 1818. The three public deliverables are: 1) an online digital museum with active co-creation and curation of its content by the public; 2) activities kits for table-top programming; and 3) a set of Making activities. The project will also produce professional development deliverables: workshops and associated materials to increase practitioners' capacity to engage multiple and diverse publics in science-in-society issues. The initiative is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project by Arizona State University and their museum and library collaborators around the country will examine the hypothesis that exposing publics to opportunities for interactive, creative, and extensive engagement within an integrated transmedia environment will foster their interest in science, technology, engineering and mathematics (STEM), develop their 21st century skills with digital tools, and increase their understanding, ability, and feelings of efficacy around issues in science-in-society. These three distinct yet interlocking modes of interaction provide opportunities for qualitative and quantitative, mixed-methods research on the potential of transmedia environments to increase the ability of publics to work individually and collectively to become interested in and involved with science-in-society issues.
This report summarizes evaluative findings from a project titled “What Curiosity Sounds Like: Discovering, Challenging, and Sharing Scientific Ideas” (a.k.a.: “Discovery Dialogues”). The project, a Full-Scale development project funded by the National Science Foundation as part of its Advancing Informal Science Learning (AISL) program, explored new ways to actively engage both lay and professional audiences, and foster meaningful communication between scientists and the general public. Appendix includes survey and interview questions.