RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
Few people realize that the largest part of our planet’s biosphere remains virtually unexplored and unknown. This enormous habitat, accounting for an area of 116 million square miles or the equivalent size of roughly 30 times the area of the United States, is the abyssal zone of the deep ocean. The abyssal sea floor, at about 6000 ft., contains more than four times as much habitat for animal life as all of the dry mountains, forests, deserts, plains and jungles combined. Microscopic larvae in the deep ocean, are essential for the renewal and replenishment of life and they repopulate areas damaged by human activities such as mining and trawling, and they make marine protected areas both feasible and important. The National Science Foundation has funded intensive studies of oceanography related to larval recruitment for decades. However, findings from this large NSF investment of personnel, technology and funding have never been widely presented to the public. This project proposes to remedy this by developing a 40 minute giant screen film to be shown in science centers across the country, supported by virtual reality and augmented reality learning tools. The film will cover select deep ocean science expeditions using the deep-sea vehicles Alvin and ROV Jason. Content will include elements of the research process, activities related to the design and operation of deep-sea vehicles as well as interviews with scientists and technologists. The companion activities, Deep-Ocean Pilot (a VR-360° viewing station) and Plankton Quest (an AR biology treasure hunt) will extend the audience experience of the deep ocean out of the giant screen theater and into the surrounding museum environment. The website and social media will extend awareness and resources into homes. The project will be appropriate for a broad general audience, with particular appeal for the target audience of women and girls (ages 7-20). The larval biologist team is led by the PI at the University of Oregon, in collaboration with scientists from North Carolina State University, Western Washington University and the University of Rhode Island. Several young women scientists will be featured in the film providing role models. The production company, Stephen Low Productions, Inc. will use the latest technology on the Alvin and other cinematic tools to capture the visual images in the abyss. Collaborating museums will participate in the development and implementation of the Virtual and Augmented Reality learning tools as well as showing the film in their theaters.
Broader impact project goals include 1) Advancing public awareness of the abyssal ocean, the role of microscopic larvae, and what scientists are learning from expeditions that use deep submergence technologies; 2) Introducing public audiences and young women specifically to the wide range of STEM-related occupations encompassed in the field of ocean exploration and research; and 3) Advancing STEM learning research and practice in the area of immersive media in conveying STEM concepts and enhancing audience identification with STEM. Oregon State University’s STEM Research Center will build new knowledge by conducting formative and summative evaluation of the film and its associated support products (e.g., Virtual and augmented reality activities, website resources), addressing the following evaluation questions: 1)What do audiences take away from their experience in terms of fascination/interest, awareness and understanding related to ocean science exploration? 2) To what degree does the film alone or in combination with supplemental experiences trigger career awareness in girls and young women, and youth of racial/ethnic backgrounds? 3) To what degree do immersive experiences (a sense of “being there”) contribute to learning from the film? 4) How enduring are outcomes with audiences past the onsite immediate experience? Formative evaluation will be designed as ongoing improvement informed by empirical evidence in which evaluators work with team members to answer decision-relevant questions in a timely and project-focused way. The summative evaluation will be structured as an effectiveness study using mixed methods and ascertaining whether key programmatic outcomes have been reached and the degree to which particular program elements will have contributed to the results.
DATE:
-
TEAM MEMBERS:
Craig YoungAlexander LowStephen LowGeorge von DassowTrish Mace
The Marine Discovery Center, a new, interactive 16,000 sq. ft. exhibition space will replace Feiro Marine Life Center’s existing 40-year-old facility. The planning of this accessible exhibition experience will prioritize engaging visitor connections to the ocean environment by improving scientific literacy skills, increasing awareness of historical and recent regional Tribal knowledge, encouraging stewardship actions in the marine environment, and developing deeper understandings of important local species. The Marine Discovery Center is a joint venture of Feiro Marine Life Center, the National Oceanic and Atmospheric Administration (NOAA)’s Olympic Coast National Marine Sanctuary, and Olympic Coast National Marine Sanctuary Foundation.
Monroe County’s Seneca Park Zoo will modernize the guest experience in the zoo’s Animal Hospital to increase accessibility and promote visitor engagement. The project will address existing barriers to visitor participation and engagement by updating the educational graphics and incorporating new technology into the exhibit to create a multisensory experience that engages visitors of all education levels, interests, and abilities. The modernized Animal Hospital will benefit the zoo’s 400,000 annual visitors and help accomplish its strategic goals of compelling storytelling and providing exceptional educational experiences to inspire conservation action.
The Wyoming State Museum will implement an exhibit plan developed with content experts from across the state to produce a Prehistoric Wyoming exhibit. The exhibit will explore the prehistory of Wyoming, with a special focus on the age of dinosaurs, and will serve the needs of the museum’s three main visitor groups—local families, out-of-state tourists, and students on field trips—as determined through formative surveys and visitor feedback. Visitors will learn about the geological forces that shaped the Wyoming landscape visible today, examine the different plants and animals that have called Wyoming home through the ages, and discover the history of fossil hunters in Wyoming.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Project goals:
● Develop an interactive microscopy exhibit platform
● Design the platform to work for various types of microscopic samples
● Create a platform that is accessible and extensible to small- and mid-sized ISE venues
● Better understand how to scaffold scientific observation, esp. with image recognition technologies
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Zoos and aquariums have been offering programming, events, and visit accommodations to autistic individuals for several years. While these efforts can provide great experiences, they are focused more on accommodation and the outward-facing guest experience than inclusion. Lack of inclusion features in design, programming, and representation amongst zoo and aquarium representatives, ultimately limits full inclusion and adds to a sense in autistic individuals of not belonging and not being welcomed. To develop a fully inclusive experience for autistic individuals, this project will develop an evidence-based framework of inclusive practices for zoos and aquariums and build a community of practice around inclusion broadly. The project brings together researchers from Oregon State University, Vanderbilt Kennedy Center’s Treatment and Research Institute for Autism Spectrum Disorders, and the Association of Zoos and Aquariums. Researchers will create and investigate the extent and ways in which a research-informed framework and associated tools (i.e. case studies, discussion guides, self-guided audits, etc.) and strategies support science learning for autistic individuals, and help practitioners expand access and inclusion of autistic audiences beyond special events or the general visit experience by applying inclusive practices for programs, exhibit development, internships, volunteer opportunities, and employment. To maximize impact, the project will develop and expand a network of early adopters to build a community of practice around inclusive practices to develop fully inclusive zoo and aquarium experiences for all individuals.
The project will investigate 4 research questions: (1) In what ways and to what extent are zoos and aquariums currently addressing access and inclusion for autistic individuals? (2) How do staff in zoos and aquariums perceive their and their institution’s willingness and ability to address access and inclusion for autistic individuals? (3) What is a framework of evidence-based practices across the zoo and aquarium experience that is inclusive for autistic individuals, and what associated tools and strategies are needed to make the framework useful for early adopters? And (4) to what extent and in what ways does a research informed framework with associated tools and strategies engage, support, and enhance an existing community of practitioners already dedicated to addressing autistic audiences and promote inclusive practices at zoos and aquariums for autistic people? The project is designed as two phases: (1) the research and development of a framework of inclusive practices and tools for supporting autistic individuals and (2) expanding a network of early adopters to build a community of practice around inclusive practices and an overall strategy of implementation. The framework will be informed through a state of the field study across the zoo/aquarium field that includes a landscape study and needs assessment as well as a review of literature that synthesizes existing research across disciplines for developing inclusive practices for autistic individuals in zoos and aquariums. The team will also conduct online surveys and focus groups to gather input from various stakeholders including zoo and aquarium employees and practitioners, autistic individuals, and their social groups (e.g., family members, peers, advocacy organizations). The second phase of the study will focus on sharing the framework and tools with practitioners across the zoo/aquarium field for feedback and reflection to develop an overall strategy for broader implementation and expanding the existing network of zoo and aquarium professionals to build a community of practice dedicated to the comprehensive inclusion of autistic individuals across the full zoo and aquarium experience. The results will be disseminated through conference presentations, scholarly publications, online discussion forums, and collaborative partners’ websites. The project represents one of the first of its kind on autistic audiences within the zoo and aquarium context and is the first to look at the full experience of autistic patrons to zoos and aquariums across programs/events, exhibits, volunteering, internship, and employment opportunities. A process evaluation conducted as part of the project will explore how the approach taken in this project may be more broadly applied in understanding and advancing inclusion for other audiences historically underserved or marginalized by zoos and aquariums.
This Research in Service to Practice project is supported by the Advancing Informal STEM Learning (AISL) program.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project will research core methods of science documentary film production and impact on audience engagement and understanding. The findings from this study will be used to later produce a film on how the CRISPR genome editing technology will shape agriculture, ecology, and the natural world. The research study and film to be produced will be a collaboration of science communication practitioners and researchers. The intended outcomes are to improve effective science filmmaking and increase impact on audiences. Many people rely on documentary film and videos for science information outside of formal learning environments. Research has shown that video programming can reduce knowledge gaps between those of higher and lower levels of education. But there is little research with findings about what makes a particular style of storytelling effective for engagement and learning outcomes. A recent report of the National Academies of Sciences, Engineering and Medicine identified a significant shortage of social science research with directly applicable lessons for filmmakers. This project addresses this need by providing new frameworks for research and methods to produce science documentaries. Project partners are iBiology, a producer of video resources for learning, and science communication researchers at the University of Wisconsin-Madison.
This project will examine two key questions: 1) In a science documentary film, how does the diversity of the scientists profiled and the use of a narrator shape audiences? perception of content and scientists? and 2) What are effective methods in science filmmaking to visualize the invisible (i.e. explain scientific phenomena that are not easily visualized)? The project begins by testing a recently produced film, Human Nature, that tells the story of the discovery of CRISPR (genome editing), told by the scientists who led the effort. Phase 1 testing will include screenings, focus groups, and experiments run through Amazon Mechanical Turk to test what features of the film (editorial voice and visualization styles) are most effective for communicating scientific content. In Phase 2 video test clips will be produced using a combination of narration and visualization strategies. An experimental design run through Amazon Turk will randomly assign participants to watch a clip using different combinations. Researchers will use this data to parse out what effect seems to be related to particular narration and visualization choices. This quantitative experimental data will be supplemented by qualitative data from focus groups with participants with a diverse range of science experience and demographic backgrounds. Researchers will design a survey-embedded experiment with a U.S. nationally representative sample to see how well the findings translate and change in a broader population.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Dietram ScheufeleSarah GoodwinElliot Kirschner
The science museum field is only starting to look at ways of providing visitors with opportunities for the authentic observation of complex, real-time biological phenomenon. The project will develop and research a microscope-based exhibit with pedagogical scaffolding (i.e., helpful prompts) that responds to visitors' changing views as they explore live samples and biological processes. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. Scientific observation is a systematic, complex practice, critical in the biological sciences where investigation is heavily reliant on visual data. Using techniques and equipment similar to what scientists themselves use, the exhibit will enable visitors to see and explore the complex, dynamic visual evidence that scientists themselves see. The exhibit will use new and more affordable high-resolution imaging technology and image analysis software to make microscopic images of living organisms visible. Armed with "smart" (i.e., computer-assisted) pedagogical scaffolding that supports inquiry, the project will develop exhibits that help informal learners bridge the gap between everyday observation and authentic scientific observation. The platform will incorporate strategies grounded in prior work on learning through observation that will be applicable to a range of biological content and live specimens. The project platform will be designed for use to a variety of informal science learning environments, including nature centers and mobile laboratories as well as interactive science centers. The project platform itself, including the microscope, related imaging, and learning technologies will be relatively inexpensive, bring it within reach of small science museum and schools. The exhibit will directly engage thousands of learners who visit the Exploratorium and will reach underserved audiences through partnerships with BioBus, a mobile unit that serves the New York City area, and the Noyo Center of Marine Science, a science museum that serves rural areas in Northern California.
The project will move beyond simulation and modeling of complex visual phenomena and provide learners with experiences using real visual evidence that can deeply engage them with the content and practice of biological science. By grounding the work in prior theoretical and empirical findings, project research will refine and broaden understanding of scaffolding strategies and their effect on informal science learning at exhibits. Project research will investigate how the project supports learners (1) asking productive questions (i.e., those answerable through observations) that are meaningful to them, (2) interpreting what they see, and (3) connecting their observations to biological concepts to build a more coherent understanding of the content and practice of biological disciplines. A series of comparative studies across and within venues, specimens, and content will assess engagement and scaffolding strategies, with a particular focus on appropriately integrating computational imaging techniques in a way that is responsive to the interests and needs of different venues' audiences. Project research will contribute important knowledge on ways to support informal learners who are engaged in authentic observation of biological phenomenon. Project research findings and technology resources will be widely shared with informal STEM researchers and practitioners concerned with engaging the public in current research in biology, as well as those interested in supporting observation in other disciplines (e.g., meteorology, ocean science, environmental science) that rely on an evidence base of live, dynamic, complex imagery.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Exploratorium’s The Phenomenal Genome: Evolving Public Understanding of Genetics in the Post-Mendelian Era project addresses the increasing need to develop genomic literacy in the public at large. The explosion of genomics research over the past two decades has led to an increasingly complex picture of the determinants of human health and human phenotypes, and the applications of this research are now making their way into the clinic, the media, and the hands of consumers. The goal of this project is to create a model for increasing genomic literacy through Informal Science Education programming (ISE), creating a pathway for better decision making for the health of individuals and society at large. The Phenomenal Genome focuses on general science museum visitors and teachers of middle and high school students.
The core of the Exploratorium’s approach to science education is the creation of intriguing, provocative and investigable phenomena that are experienced directly and personally through exhibits, facilitated explorations, programs, and teacher professional development. Over two years, we will develop, test, and iterate inquiry-based professional development to help teachers develop understanding and integrate the principles of contemporary genomics and genetics into their classrooms. 120 middle and high school teachers will be served during this period, and many more beyond that, as the activities and workshops developed become a regular part of our teacher professional development programming. A learning scientist specializing in teacher learning will conduct research to determine which approaches and experiences are most effective for this context, and why.
In a parallel process, we will develop and test exhibits and experiences on the museum floor for museum visitors, using a similar iterative process of prototype testing with an embedded learning scientist to study visitor learning. We plan to define the approaches that work across audiences and contexts, as well as those that work best in particular contexts.
Through this work, we will develop new resources for teaching and learning contemporary genomics and genetics, and identify promising practices in communicating contemporary genomics and genetics in informal spaces across audiences. We will disseminate our findings via conferences, peer-reviewed articles, and workshops for the ISE community.
Biology has become a powerful and revolutionary technology, uniquely poised to transform and propel innovation in the near future. The skills, tools, and implications of using living systems to engineer innovative solutions to human health and global challenges, however, are still largely foreign and inaccessible to the general public. The life sciences need new ways of effectively engaging diverse audiences in these complex and powerful fields. Bio-Tinkering Playground will leverage a longtime partnership between the Stanford University Department of Genetics and The Tech Museum of Innovation to explore and develop one such powerful new approach.
The objective of Bio-Tinkering Playground is to create and test a groundbreaking type of museum space: a DIY community biology lab and bio-makerspace, complete with a unique repertoire of hands-on experiences. We will tackle the challenge of developing both open-ended bio-making activities and more scaffolded ones that, together, start to do for biology, biotech, and living systems what today’s makerspaces have done for engineering.
A combined Design Challenge Learning, making, and tinkering approach was chosen because of its demonstrated effectiveness at fostering confidence, creative capacity, and problem solving skills as well as engaging participants of diverse backgrounds. This educational model can potentially better keep pace with the emerging and quickly evolving landscape of biotech to better prepare young people for STEM careers and build the next generation of biotech and biomedical innovators.
Experience development will be conducted using an iterative design process that incorporates prototyping and formative evaluation to land on a final cohort of novel, highly-vetted Bio-Tinkering Playground experience. In the end, the project will generate a wealth of resources and learnings to share with the broader science education field. Thus, the impacts of our foundational work can extend well beyond the walls of The Tech as we enable other educators and public institutions around the world to replicate our model for engagement with biology.
American Indian and Alaska Native communities continue to disproportionately face significant environmental challenges and concerns as a predominately place-based people whose health, culture, community, and livelihood are often directly linked to the state of their local environment. With increasing threats to Native lands and traditions, there is an urgent need to promote ecological sustainability awareness and opportunities among all stakeholders within and beyond the impacted areas. This is especially true among the dozens of tribes and over 50,000 members of the Coast Salish Nations in the Pacific Northwest United States. The youth within these communities are particularly vulnerable. This Innovations in Development project endeavors to address this serious concern by implementing a multidimensional, multigenerational model aimed at intersecting traditional ecological knowledge with contemporary knowledge to promote: (a) environmental sustainability awareness, (b) increased STEM knowledge and skills across various scientific domains, and (c) STEM fields and workforce opportunities within Coast Salish communities. Building on results from a prior pilot study, the project will be grounded on eight guiding principles. These principles will be reflected in all aspects of the project including an innovative, culturally responsive toolkit, curriculum, museum exhibit and programming, workshops, and a newly established community of practice. If successful, this project could provide new insights on effective mechanisms for not only promoting STEM knowledge and skills within informal contexts among Coast Salish communities but also awareness and social change around issues of environmental sustainability in the Pacific Northwest.
Over a five-year period, the project will build upon an extant curriculum and findings codified in a pilot study. Each aspect of the pilot work will be refined to ensure that the model established in this Innovations and Development project is coherent, comprehensive, and replicable. Workshops and internships will prepare up to 200 Coast Salish Nation informal community educators to implement the model within their communities. Over 2,500 Coast Salish Nation and Swinomish youth, adults, educators, and elders are expected to be directly impacted by the workshops, internships, curriculum and online toolkit. Another 300 learners of diverse ages are expected to benefit from portable teaching collections developed by the project. Through a partnership with the Washington State Burke Natural History Museum, an exhibit and museum programming based on the model will be developed and accessible in the Museum, potentially reaching another 35,000 people each year. The project evaluation will assess the extent to which the following expected outcomes are achieved: (a) increased awareness and understanding of Indigenous environmental sustainability challenges; (b) increased skills in developing and implementing education programs through an Indigenous lens; (c) increased interest in and awareness of the environmental sciences and other STEM disciplines and fields; and (d) sustainable relationships among the Coast Salish Nations. A process evaluation will be conducted to formatively monitor and assess the work. A cross cultural team, including a recognized Coast Salish Indigenous evaluator, will lead the summative evaluation. The project team is experienced and led by representatives from the Swinomish Indian Tribal Community, Oregon State University, Garden Raised Bounty, the Center for Lifelong STEM Learning, the Urban Indian Research Institute, Feed Seven Generations, and the Burke Museum of Natural History and Culture.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.