This video presents reflections on SCIENCES: Supporting a Community’s Informal Education Needs—Confidence and Empowerment in STEM. SCIENCES brought together Eden Place Nature Center and the Chicago Zoological Society to collaboratively support environmental conservation and lifelong scientific learning in the Fuller Park neighborhood of Chicago.
The SCIENCES project began in 2013 and focused on adapting existing educational programs into a suite of environmentally focused science learning opportunities for professional, student, and public audiences in the Fuller Park neighborhood
The summative evaluation documents and articulates what SCIENCES has improved or changed, and in what ways. The final design of the summative evaluation was based on findings from the front-end and formative evaluations, including using participatory evaluation techniques to engage community members in discussing their experience with the programs and assessment of community needs and assets at the close of the project.
The goal of the summative evaluation was to address discrete program impacts in the context of the project, as well as the cross-program impact of providing a thematically
In The Nature of Community: SCIENCES, we share the lessons learned from an innovative partnership designed to leverage the strengths of two nonprofit organizations—a large cultural institution and a smaller, deeply-rooted community-based organization, both of which offer informal science education expertise.
You’ll read first-hand reflections of how staff members, community leaders and members, children, and adults experienced this partnership: the expectations, surprises, challenges, successes, and lessons learned. We hope the description of this partnership inspires other organizations to
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.
This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
The Ocean Science project integrates the Ocean Literacy Essential Principles and Fundamental Concepts into a Western Washington region-wide, coordinated program of formal and informal education consisting of: 1. Teacher professional development in the ocean sciences to integrate the Ocean Literacy Essential Principles and Fundamental Concepts into inquiry-based marine science education and instruction; 2. Evaluation and re-alignment of existing Sound Science ecosystems curricula into Ocean Science, incorporating NOAA data and promoting the Ocean Literacy Essential Principles and Fundamental Concepts; 3. Classroom programs, beach field investigations, and on-site programs at the Seattle Aquarium of the Olympic Coast national Marine Sanctuary's Olympic Coast Discovery Center for grades 4-5 students, their parents and teachers; 4. Parent training in ocean science content, the Ocean Literacy Essential Principles and Fundamental Concepts, and inquiry-based methods for supporting their children's science education; 5. Informal education for the general public via an interactive learning station linked to the Window on Washington Waters exhibit and designed to innovatively use NOAA data and information (videos, computer simulations and other creative media) to increase and evaluate ocean literacy in adults and children. Window on Washington Waters displays the outer coast marine environments and sea life of the Olympic Coast National Marine Sanctuary.
Purpose: This project will develop and test Happy Atoms, a physical modeling set and an interactive iPad app for use in high school chemistry classrooms. Happy Atoms is designed to facilitate student learning of atomic modeling, a difficult topic for chemistry high school students to master. Standard instructional practice in this area typically includes teachers using slides, static ball and stick models, or computer-simulation software to present diagrams on a whiteboard. However, these methods do not adequately depict atomic interactions effectively, thus obscuring complex knowledge and understanding of their formulas and characteristics.
Project Activities: During Phase I (completed in 2014), the team developed a prototype of a physical modeling set including a computerized ball and stick molecular models representing the first 17 elements on the periodic table and an iPad app that identifies and generates information about atoms. A pilot study at the end of Phase I tested the prototype with 187 high school students in 12 chemistry classes. Researchers found that the prototype functioned as intended. Results showed that 88% of students enjoyed using the prototype, and that 79% indicated that it helped learning. In Phase II, the team will develop additional models and will strengthen functionality for effective integration into instructional practice. After development is complete, a larger pilot study will assess the usability and feasibility, fidelity of implementation, and promise of Happy Atoms to improve learning. The study will include 30 grade 11 chemistry classrooms, with half randomly assigned to use Happy Atoms and half who will continue with business as usual procedures. Analyses will compare pre-and-post scores of student's chemistry learning, including atomic modeling.
Product: Happy Atoms will include a set of physical models paired with an iPad app to cover high school chemistry topics in atomic modeling. The modeling set will include individual plastic balls representing the elements of the periodic table. Students will use an iPad app to take a picture of models they create. Using computer-generated algorithms, the app will then identify the model and generate information about its physical and chemical properties and uses. The app will also inform students if a model that is created does not exist. Happy Atoms will replace or supplement lesson plans to enhance chemistry teaching. The app will include teacher resources suggesting how to incorporate games and activities to reinforce lesson plans and learning.
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE:
-
TEAM MEMBERS:
Julia ParrishMarco HatchSelina Heppell
Comprehension of the nature and practice of science and its social context are important aspects of communicating and learning science. However there is still very little understanding among the non-scientific community of the need for debate in driving scientific knowledge forward and the role of critical scrutiny in quality control. Peer review is an essential part of this process. We initiated and developed a pilot project to provide an opportunity for students to explore the idea that science is a dynamic process rather than a static body of facts. Students from two different schools
In the course of the last decade the European debate on the concept of citizenship has shown that a definition of this concept in strictly legal and jurisprudence terms is reductive. Indeed a behavioral element is present, which goes beyond the defence and request for defence of rights and duties, but actually stresses the importance of acting within a community (or within several communities). A citizenship belonging to a given space/time context which, to be authentic, requires know-how and know-how-to-be that can be gained in different training opportunities (formal, informal etc.) with
Through this review of research on public engagement with science, Feinstein, Allen, and Jenkins advocate supporting students as “competent outsiders”—untrained in formal sciences, yet using science in ways relevant to their lives. Both formal and informal settings can be well suited for work in which students translate scientific content and practices into meaningful actions.
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. Makerspaces are social spaces with tools, where individuals and groups conceptualize, design, and make things using new and old technologies. Literacy practices are the ways people use representational texts to navigate and make sense of their worlds. They are used in particular contexts with particular goals. By “representational texts” we mean written words, talk, photographs, diagrams, videos, schematics, computer code, electrical circuit diagrams
This poster was presented at the 2016 Advancing Informal STEM Learning (AISL) PI Meeting held in Bethesda, MD on February 29-March 2. The SCIENCES project aims to create a STEM ecosystem in Fuller Park, a chronically, severely under-resourced urban community in Chicago.