Skip to main content

Community Repository Search Results

resource project Media and Technology
This informal education project utilizes the Science on a Sphere (SOS) Network to enable meaningful interpretation of real-time weather and climate data by museum docents and visitors viewing SOS exhibits nationwide. The project will generate and provide real-time NOAA weather, climate and ocean data to the SOS Network along with appropriate training for docents. It will also provide data interpretation summaries, data discussions and concise talking points on a regularly updated blog. This project is being implemented by a collaborative team of two weather and climate centers of NOAA/NESDIS: the Cooperative Institute for Meteorological Satellite Studies (CIMSS) and Cooperative Institute for Climate and Satellites (CICS), in association with the NOAA Environmental Visualization Laboratory, the I.M. Systems Group, and the Maryland Science Center.
DATE: -
TEAM MEMBERS: Steven Ackerman Phillip Arkin
resource project Media and Technology
The American Museum of Natural History, in association with several NOAA entities, will be creating a suite of media products employing visualization of Earth-observation data as well as associated professional development programs to expand educational experiences in informal science institutions nationwide. Interactive versions of the visualizations will also be disseminated via the AMNH website. Visualization assets will be distributed to NOAA for utilization on climate.gov and Science on a Sphere. The creation of training programs and educational materials for informal education professionals will enhance the experience and efficacy of the data visualizations as tools to understand and build stewardship of Earth systems.
DATE: -
TEAM MEMBERS: Vivian Trakinski
resource research Public Programs
This poster was presented at the 2010 Association of Science-Technology Centers Annual Conference. The Saint Louis Science Center is a partner in Washington University's Cognitive, Computational, and Systems Neuroscience interdisciplinary graduate program funded by the NSF-IGERT (Integrative Graduate Education and Research Traineeship) flagship training program for PhD scientists and engineers.
DATE:
TEAM MEMBERS: Christine Roman Elisa Israel
resource project Public Programs
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE: -
TEAM MEMBERS: Kurt Thoroughman Gregory DeAngelis Randy Buckner Steven Petersen Dora Angelaki
resource project Media and Technology
The Environmental Scientist-in-Residence Program will leverage NOAA s scientific assets and personnel by combining them with the creativity and educational knowledge of the pioneer hands-on science center. To do this, the program will embed NOAA scientists in a public education laboratory at the Exploratorium. Working closely with youth Explainers, exhibit developers, and Web and interactive media producers at the Exploratorium, NOAA scientists will share instruments, data, and their professional expertise with a variety of public audiences inside the museum and on the Web. At the same time the scientists will gain valuable skills in informal science communication and education. Through cutting-edge iPad displays, screen-based visualizations, data-enriched maps and sensor displays, and innovative interactions with visitors on the museum floor, this learning laboratory will enable NOAA scientists and Exploratorium staff to investigate new hands-on techniques for engaging the public in NOAA s environmental research and monitoring efforts.
DATE: -
TEAM MEMBERS: Mary Miller
resource project Media and Technology
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.

The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE: -
TEAM MEMBERS: Geza Gyuk Pamela Gay Christopher Lintott Michael Raddick Lucy Fortson John Wallin
resource research Media and Technology
This introduction presents the essays belonging to the JCOM special issue on User-led and peer-to-peer science. It also draws a first map of the main problems we need to investigate when we face this new and emerging phenomenon. Web tools are enacting and facilitating new ways for lay people to interact with scientists or to cooperate with each other, but cultural and political changes are also at play. What happens to expertise, knowledge production and relations between scientific institutions and society when lay people or non-scientists go online and engage in scientific activities? From
DATE:
TEAM MEMBERS: Alessandro Delfanti
resource project Media and Technology
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.

Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.

These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE: -
TEAM MEMBERS: Richard Ladner Libby Cohen Sheryl Burgstahler William McCarthy
resource research Media and Technology
This article is a case study and rhetorical analysis of a specific scientific paper on a computer simulation in astrophysics, an advanced and often highly theoretical science. Findings reveal that rhetorical decisions play as important a role in creating a convincing simulation as does sound evidence. Rhetorical analysis was used to interpret the data gathered in this case study. Rhetorical analysis calls for close reading of primary materials to identify classical rhetorical figures and devices of argumentation and explain how these devices factor in the production of scientific knowledge
DATE:
TEAM MEMBERS: Aimee Kendall Roundtree
resource evaluation Media and Technology
Supported in major part by the National Science Foundation, The Human Spark (THS) project includes a three-part national PBS television series hosted by Alan Alda and a multifaceted outreach initiative to engage public television stations and their partner science museums nationwide in order to extend the utilization and impact of the project. As an independent evaluator, Multimedia Research was contracted by Thirteen to capture how the collaboration between television station and science museum outreach grantees and their respective outreach activities meet the stated goals of the outreach
DATE:
TEAM MEMBERS: Barbara Flagg
resource project Exhibitions
This project entails the creation of a coordinated colony of robotic bees, RoboBees. Research topics are split between the body, brain, and colony. Each of these research areas is drawn together by the challenges of recreating various functionalities of natural bees. One such example is pollination: Bees coordinate to interact with complex natural systems by using a diversity of sensors, a hierarchy of task delegation, unique communication, and an effective flapping-wing propulsion system. Pollination and other agricultural tasks will serve as challenge thrusts throughout the life of this project. Such tasks require expertise across a broad spectrum of scientific topics. The research team includes experts in biology, computer science, electrical and mechanical engineering, and materials science, assembled to address fundamental challenges in developing RoboBees. An integral part of this program is the development of a museum exhibit, in partnership with the Museum of Science, Boston, which will explore the life of a bee and the technologies required to create RoboBees.
DATE: -
TEAM MEMBERS: Robert Wood Radhika Nagpal J. Gregory Morrisett Gu-Yeon Wei Joseph Ayers
resource research Media and Technology
Digital information and communication technologies (ICTs) are novelty tools that can be used to facilitate broader involvement of citizens in the discussions about science. The same tools can be used to reinforce the traditional top-down model of science communication. Empirical investigations of particular technologies can help to understand how these tools are used in the dissemination of information and knowledge as well as stimulate a dialog about better models and practices of science communication. This study focuses on one of the ICTs that have already been adopted in science
DATE:
TEAM MEMBERS: Inna Kouper