Sense-making with data through the process of visualization—recognizing and constructing meaning with these data—has been of interest to learning researchers for many years. Results of a variety of data visualization projects in museums and science centers suggest that visitors have a rudimentary understanding of and ability to interpret the data that appear in even simple data visualizations. This project supports the need for data visualization experiences to be appealing, accommodate short and long-term exploration, and address a range of visitors’ prior knowledge. Front-end evaluation
The American Museum of Natural History, in association with several NOAA entities, will be creating a suite of media products employing visualization of Earth-observation data as well as associated professional development programs to expand educational experiences in informal science institutions nationwide. Interactive versions of the visualizations will also be disseminated via the AMNH website. Visualization assets will be distributed to NOAA for utilization on climate.gov and Science on a Sphere. The creation of training programs and educational materials for informal education professionals will enhance the experience and efficacy of the data visualizations as tools to understand and build stewardship of Earth systems.
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.
Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
The Environmental Scientist-in-Residence Program will leverage NOAA s scientific assets and personnel by combining them with the creativity and educational knowledge of the pioneer hands-on science center. To do this, the program will embed NOAA scientists in a public education laboratory at the Exploratorium. Working closely with youth Explainers, exhibit developers, and Web and interactive media producers at the Exploratorium, NOAA scientists will share instruments, data, and their professional expertise with a variety of public audiences inside the museum and on the Web. At the same time the scientists will gain valuable skills in informal science communication and education. Through cutting-edge iPad displays, screen-based visualizations, data-enriched maps and sensor displays, and innovative interactions with visitors on the museum floor, this learning laboratory will enable NOAA scientists and Exploratorium staff to investigate new hands-on techniques for engaging the public in NOAA s environmental research and monitoring efforts.
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
Online knowledge production sites do not rely on isolated experts but on collaborative processes, on the wisdom of the group or “crowd”. Some authors have argued that it is possible to combine traditional or credentialled expertise with collective production; others believe that traditional expertise's focus on correctness has been superseded by the affordances of digital networking, such as re-use and verifiability. This paper examines the costs of two kinds of “crowdsourced” encyclopedic projects: Citizendium, based on the work of credentialled and identified experts, faces a recruitment
To appreciate what a huge difference there is between the author of a peer-reviewed journal article and just about any other kind of author we need only remind ourselves why universities have their "publish or perish" policy: aside from imparting existing knowledge to students through teaching, the work of a university scholar or scientist is devoted to creating new knowledge for other scholars and scientists to use, apply, and build upon, for the benefit of us all. Creating new knowledge is called "research", and its active use and application are called "research impact". Researchers are
The Jackprot is a didactic slot machine simulation that illustrates how mutation rate coupled with natural selection can interact to generate highly specialized proteins. Conceptualized by Guillermo Paz-y-Miño C., Avelina Espinosa, and Chunyan Y. Bai (New England Center for the Public Understanding of Science, Roger Williams University and the University of Massachusetts, Dartmouth), the Jackprot uses simplified slot-machine probability principles to demonstrate how mutation rate coupled with natural selection suffice to explain the origin and evolution of highly specialized proteins. The
Art history images essential for teaching art history and art appreciation courses at institutions of higher education are important for universities' stakeholders (students, faculty and staff, local museums, and the neighbouring community). Digital images displayed on the Web sites of universities worldwide are generally made available through digitizing slide collections, subscribing to digital libraries of art history images, making use of faculty's personal images and using university library catalogues. When creating a collection of art history images, Russian universities are severely
DATE:
TEAM MEMBERS:
Inna KizhnerTatiana KochevaAnna KoulikovaRaissa LozhkinaEugenia Popova
Roto, an exhibition design and production firm, contracted Randi Korn & Associates, Inc. (RK&A) to conduct a front-end evaluation of Speed, an exhibition being developed for The Science Museum of Virginia (SMV) in Richmond, Virginia. RK&A explored visitors’ thoughts, perceptions, and understandings of exhibition concepts related to speed, defined as change over time. How did we approach this study? RK&A worked closely with Roto to identify the goals and objectives for the Speed exhibition. Findings from the front-end evaluation were designed to help Roto and SMV find common ground between
Project LIFTOFF works with local, regional, and national partners to engineer statewide systems for Informal Science Education that inspire: YOUTH to pursue STEM education and careers through increased opportunities for quality, hands-on STEM learning. AFTERSCHOOL STAFF to facilitate STEM learning experiences that contribute to the overall STEM education and aspirations of youth in their programs. PROGRAM ADMINISTRATORS to encourage and support staff in the integration of STEM enrichment into the daily programming. STATE LEADERS to sustain and expand afterschool learning opportunities so that all students have access to engaging STEM experiences outside of the regular school day. Project LIFTOFF is dedicated to the development of the following essential elements of statewide systems for informal science education:
Access to appropriate STEM Curriculum for youth of all ages, abilities, and socio-cultural backgrounds that meets the needs and interests of individual community programs
Systematic STEM Professional Development that matches individual skills in positive youth development with abilities to facilitate discovery and science learning
A diverse Cadres of Trainers who will deliver the professional development, technical assistance and curriculum dissemination in their local communities
Authentic Evaluation of informal science efforts that determine the impacts on youth aspirations and the capacity of youth programs to provide quality STEM experiences
Local STEM education leadership to identify the ways in which collaborative education efforts can advance the development of 21st Century Skills and the preparedness for STEM workforce and higher education
Partnerships in support of youth development and informal science education that convene local, regional, and statewide organizations and stakeholders
To advance national initiatives and states' sySTEM engineering efforts, LIFTOFF coordinates an annual convening, the Midwest Afterschool Science Academy, that brings together national informal science experts, system leaders and youth development professionals to elevate the levels of science after school. The 5th MASA will be in the spring of 2014 in Kansas City, MO
DATE:
TEAM MEMBERS:
Missouri AfterSchool NetworkJeff Buehler
The authors provide an analysis of pairs of children interacting with a multi-touch tabletop exhibit designed to help museum visitors learn about evolution and the tree of life. The exhibit’s aim is to inspire visitors with a sense of wonder at life’s diversity while providing insight into key evolutionary concepts such as common descent. The authors find that children negotiate their interaction with the exhibit in a variety of ways including reactive, articulated, and contemplated exploration. These strategies in turn influence the ways in which children make meaning through their