The Nurture Nature Center (NNC) in Easton, PA, a joint project of the multi-state Nurture Nature Foundation and NNC, Inc., will install a Science on a Sphere and develop a new SOS module about climate and flooding. Working with the Maryland Science Center in Baltimore, the Da Vinci Science Center in Allentown, PA, and science advisers from NOAA and research universities, NNC will use existing SOS datasets, as well as new data formats, to create a docent-guided program that explains the connections between climate patterns and flooding. The Flood Forums: Education to Action program will engage audiences in deliberative forum programming to promote public understanding of the atmospheric, oceanic, and other climatic factors affecting flooding in some regional communities. Project deliverables include a program on climate change and flooding for SOS users; the same program calibrated for Magic Planet users; Forum models on issues related to climate change and flooding; project and evaluation reports; and training materials for SOS network members and other informal educators.
This poster was presented at the 2010 Association of Science-Technology Centers Annual Conference. The Saint Louis Science Center is a partner in Washington University's Cognitive, Computational, and Systems Neuroscience interdisciplinary graduate program funded by the NSF-IGERT (Integrative Graduate Education and Research Traineeship) flagship training program for PhD scientists and engineers.
This Integrative Graduate Education and Research Training (IGERT) award supports the establishment of an interdisciplinary graduate training program in Cognitive, Computational, and Systems Neuroscience at Washington University in Saint Louis. Understanding how the brain works under normal circumstances and how it fails are among the most important problems in science. The purpose of this program is to train a new generation of systems-level neuroscientists who will combine experimental and computational approaches from the fields of psychology, neurobiology, and engineering to study brain function in unique ways. Students will participate in a five-course core curriculum that provides a broad base of knowledge in each of the core disciplines, and culminates in a pair of highly integrative and interactive courses that emphasize critical thinking and analysis skills, as well as practical skills for developing interdisciplinary research projects. This program also includes workshops aimed at developing the personal and professional skills that students need to become successful independent investigators and educators, as well as outreach programs aimed at communicating the goals and promise of integrative neuroscience to the general public. This training program will be tightly coupled to a new research focus involving neuro-imaging in nonhuman primates. By building upon existing strengths at Washington University, this research and training initiative will provide critical new insights into how the non-invasive measurements of brain function that are available in humans (e.g. from functional MRI) are related to the underlying activity patterns in neuronal circuits of the brain. IGERT is an NSF-wide program intended to meet the challenges of educating U.S. Ph.D. scientists and engineers with the interdisciplinary background, deep knowledge in a chosen discipline, and the technical, professional, and personal skills needed for the career demands of the future. The program is intended to catalyze a cultural change in graduate education by establishing innovative new models for graduate education and training in a fertile environment for collaborative research that transcends traditional disciplinary boundaries.
DATE:
-
TEAM MEMBERS:
Kurt ThoroughmanGregory DeAngelisRandy BucknerSteven PetersenDora Angelaki
The Environmental Scientist-in-Residence Program will leverage NOAA s scientific assets and personnel by combining them with the creativity and educational knowledge of the pioneer hands-on science center. To do this, the program will embed NOAA scientists in a public education laboratory at the Exploratorium. Working closely with youth Explainers, exhibit developers, and Web and interactive media producers at the Exploratorium, NOAA scientists will share instruments, data, and their professional expertise with a variety of public audiences inside the museum and on the Web. At the same time the scientists will gain valuable skills in informal science communication and education. Through cutting-edge iPad displays, screen-based visualizations, data-enriched maps and sensor displays, and innovative interactions with visitors on the museum floor, this learning laboratory will enable NOAA scientists and Exploratorium staff to investigate new hands-on techniques for engaging the public in NOAA s environmental research and monitoring efforts.
This project will expand and enhance an initiative that offers zoos, aquariums, and science museums the market research they need to engage and motivate the public on issues related to the ocean and climate change. The three-year project will measure changes in public awareness and action on ocean and climate-related issues. It will integrate these research findings into recommendations offered to staff working at zoos, aquariums, and science museums as well as to the ocean conservation community and provide professional development for staff members at these institutions in order to support and shape public outreach efforts that connect climate change, the ocean and individual actions, especially among our nation's youth.
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).
Scientists and researchers from fields as diverse as oceanography and ecology, astronomy and classical studies face a common challenge. As computer power and technology improve, the sizes of data sets available to us increase rapidly. The goal of this project is to develop a new methodology for using citizen science to unlock the knowledge discovery potential of modern, large data sets. For example, in a previous project Galaxy Zoo, citizen scientists have already made major contributions, lending their eyes, their pattern recognition skills and their brains to address research questions that need human input, and in so doing, have become part of the computing process. The current Galaxy Zoo project has recruited more than 200,000 participants who have provided more than 100 million classifications of galaxies from the Sloan Digital Sky Survey. This project builds upon early successes to develop a mode of citizen science participation which involves not only simple "clickwork" tasks, but also involves participants in more advanced modes of scientific thought. As part of the project, a symbiotic relationship with machine learning tools and algorithms will be developed, so that results from citizen scientists provide a rich training set for improving algorithms that in turn inform citizen science modes of participation. The first phase of the project will be to develop a portfolio of pilot projects from astrophysics, planetary science, zoology, and classical studies. The second phase of the project will be to develop a framework - called the Zooniverse - to facilitate citizen scientists. In particular, research and machine-learning communities will be engaged to identify suitable projects and data sets to integrate into Zooniverse.
The ultimate goal with the Zooniverse is to create a sustainable future for large-scale, internet-based citizen science as part of every researcher?s toolkit, exemplifying a new paradigm in computational thinking, tapping the mental resources of a community of lay people in an innovative and complex manner that promises a profound impact on our ability to generate new knowledge. The project will engage thousands of citizens in authentic science tasks leading to a better public understanding of science and also, by the engagement of students, leading to interest in scientific careers.
DATE:
-
TEAM MEMBERS:
Geza GyukPamela GayChristopher LintottMichael RaddickLucy FortsonJohn Wallin
This introduction presents the essays belonging to the JCOM special issue on User-led and peer-to-peer science. It also draws a first map of the main problems we need to investigate when we face this new and emerging phenomenon. Web tools are enacting and facilitating new ways for lay people to interact with scientists or to cooperate with each other, but cultural and political changes are also at play. What happens to expertise, knowledge production and relations between scientific institutions and society when lay people or non-scientists go online and engage in scientific activities? From
Luckily enough, more democracy is always called for. Even in countries that can truly be described as democratic. And democracy (which is a constant reference in these pages) is increasingly related to knowledge, be it about whether growing GMOs, starting nuclear energy production or allowing the choice of a child’s gender through IVF techniques. The need to make democratic decisions on controversial issues, which increasingly imply scientific and technological knowledge, comes from the bottom, as citizens voice – sometimes even vehemently – the desire to express themselves.
Eduard Kaeser has written an interesting and critical book that is concerned with the connections between science and everyday life. The conception of ‘pop science’ is introduced to characterize developments in science popularisation that are spectacular, superficial and potentially harmful to science-society relationships. The book is of special interest to the science communication community, since it may initiate discussion about the purposes of communicating science, and also about legitimate and illegitimate strategies and means of doing so.
The Department of Computer Science and Engineering and DO-IT IT (Disabilities, Opportunities, Internetworking and Technology) at the University of Washington propose to create the AccessComputing Alliance for the purpose of increasing the participation of people with disabilities in computing careers. Alliance partners Gallaudet University, Microsoft, the NSF Regional Alliances for Persons with Disabilities in STEM (hosted by the University of Southern Maine, New Mexico State University, and UW), and SIGACCESS of the Association for Computing Machinery (ACM) and collaborators represent stakeholders from education, industry, government, and professional organizations nationwide.
Alliance activities apply proven practices to support persons with disabilities within computing programs. To increase the number of students with disabilities who successfully pursue undergraduate and graduate degrees, the alliance will run college transition and bridge, tutoring, internship, and e-mentoring programs. To increase the capacity of postsecondary computing departments to fully include students with disabilities in coursers and programs, the alliance will form communities of practice, run capacity-building institutes, and develop systemic change indicators for computing departments. To create a nationwide resource to help students with disabilities pursue computing careers and computing educators and employers, professional organizations and other stakeholders to develop more inclusive programs and share effective practices, the alliance will create and maintain a searchable AccessComputing Knowledge Base of FAQs, case studies, and effective/promising practices.
These activities will build on existing alliances and resources in a comprehensive, integrated effort. They will create nationwide collaborations among individuals with disabilities, computing professionals, employers, disability providers, and professional organizations to explore the issues that contribute to the underrepresentation of persons with disabilities and to develop, apply and assess interventions. In addition, they will support local and regional efforts to recruit and retain students with disabilities into computing and assist them in institutionalizing and replicating their programs. The alliance will work with other Alliances and organizations that serve women and underrepresented minorities to make their programs accessible to students with disabilities. Finally they will collect and publish research and implementation data to enhance scientific and technological understanding of issues related to the inclusion of people with disabilities in computing.
DATE:
-
TEAM MEMBERS:
Richard LadnerLibby CohenSheryl BurgstahlerWilliam McCarthy
Public communication on health issues on the Internet is not only a matter of popularization of medical information. It deeply deals with narration, conversation and dialogue, which are typical values in the Web 2.0. This interview will emphasize that blogs, forums, wiki are new ways in which population has been reconstructing and integrating medical knowledge. These ways are re-defining medical knowledge by means of unhinging the standard medical communication practices, based on a linear diffusion of knowledge form experts to laypeople.
Climate change is a multi-faceted issue. It relies on deep scientific bases, but merges with politics, economics, ethics and culture in a complex and strongly nonlinear social debate. This interview focuses on the relationships between public communication on climate change (with emphasis on the so-called ‘new media’) and the decision making processes. It argues that more productive and sustainable forms of communication on climate change are needed due to problems related with validation of information in the Web.