NASA@ My Library is made possible through the support of the National Aeronautics and Space Administration (NASA) Science Mission Directorate as part of its Science Activation program. The project is led by the National Center for Interactive Learning (NCIL) at the Space Science Institute (SSI) in partnership with the American Library Association (ALA) Public Programs Office, Lunar and Planetary Institute (LPI), and Education Development Center (EDC). From 2016-2020, 78 public libraries (75 partner libraries and 3 pilot libraries), 18 State Library Agencies, 6 Portal to the Public Network sites, and 30 NASA-funded scientists participated in the project. More than 225,000 library patrons were reached through their efforts.
In 2021-2022, public libraries, universities, and state library agencies will participate in the project to increase and enhance STEAM learning opportunities in their communities, with an emphasis on reaching audiences underrepresented in STEM education and professions.
There is a vein of democratic idealism in the work of science museums. It is less about political democracy than epistemological democracy. As a one-time museum educator and a researcher who studies science museums, I have always thought of it in terms of an unspoken two-part motto: “see for yourself–know for yourself.” Although this strain of idealism has remained constant throughout the history of science museums, it has been interpreted differently in different eras, responding (in part) to the social upheavals of the day. In the late 1960s, for example, a new generation of self-described
This study researched whether and how affiliation with the Nanoscale Informal Science Education Network (NISE Net) led to change in informal science education organizations’ (ISEs) practices. The NISE Net provided an opportunity to look at how participation in a large but loosely-structured network of museums, science centers, educators, and scientists can influence museums to experience organizational change and adopt new practices.
By conducting qualitative case studies of a few selected partners, this research aimed to understand the conditions that facilitate or impede the influence of
The Center for Integrated Quantum Materials pursues research and education in quantum science and technology. With our research and industry partners, the Museum of Science, Boston collaborates to produce public engagement resources, museum programs, special events and media. We also provide professional development in professional science communication for the Center's students, post-docs, and interns; and coaching in public engagement. The Museum also sponsors The Quantum Matters(TM) Science Communication Competition (www.mos.org/quantum-matters-competition) and NanoDays with a Quantum Leap. In association with CIQM and IBM Q, the Museum hosted the first U.S. museum exhibit on quantum computing.
DATE:
-
TEAM MEMBERS:
Robert WesterveltCarol Lynn AlpertRay AshooriTina Brower-Thomas
The goal of this project is to promote informal STEM education in polar research through a novel interactive learning display that uses virtual and augmented reality technology. A new display system will be developed that combines the successful techniques of touch-enabled tabletop displays with new low-cost, head-mounted display technology to deliver an immersive 3D learning experience for the IceCube Neutrino Detection system located at the South Pole. The system will provide new means for engaging the public in learning about the IceCube Neutrino Dectection system and the challenges of Antarctic research.
The proposal relies on collaboration between three groups on the University of Wisconsin- Madison campus, including the Living Environments Laboratory (LEL), the Wisconsin IceCube Particle Astrophysics Center (WIPAC), and the Games Learning Society (GLS). Once developed, the display system will be installed at the Wisconsin Institutes for Discovery Town Center, a public space that attracts close to 50,000 people per year. This proposal was submitted as an Exploratory Pathways proposal, meaning that it represents a chance to establish the basis for future research, design, and development of innovations or approaches. Outcomes from this project will inform the PIs of how best to extend the system to add more 3D environments for other research locations in Antarctica. The system will be implemented in an extensible fashion so that a user can select from one of several Antarctic research station locations, not just IceCube, from the main menu of the system and suddenly be immersed in a 3D world that seeks to teach users about polar research at that location. Contents of the interactive learning display will be translated into Spanish, and users will be able to choose which language they want to use. Evaluations of the system will also inform designers about how these museum-type systems impact learning outcomes for the general public.
This project was submitted to the Advancing Informal STEM Learning (AISL) program, but will be funded by the Division of Polar Programs. AISL seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This INSPIRE award is partially funded by the Cyber-Human Systems Program in the Division of Information and Intelligent Systems in the Directorate for Computer Science and Engineering, the Gravitational Physics Program in the Division of Physics in the Directorate for Mathematical and Physical Sciences, and the Office of Integrative Activities.
This innovative project will develop a citizen science system to support the Advanced Laser Interferometer Gravitational wave Observatory (aLIGO), the most complicated experiment ever undertaken in gravitational physics. Before the end of this decade it will open up the window of gravitational wave observations on the Universe. However, the high detector sensitivity needed for astrophysical discoveries makes aLIGO very susceptible to noncosmic artifacts and noise that must be identified and separated from cosmic signals. Teaching computers to identify and morphologically classify these artifacts in detector data is exceedingly difficult. Human eyesight is a proven tool for classification, but the aLIGO data streams from approximately 30,000 sensors and monitors easily overwhelm a single human. This research will address these problems by coupling human classification with a machine learning model that learns from the citizen scientists and also guides how information is provided to participants. A novel feature of this system will be its reliance on volunteers to discover new glitch classes, not just use existing ones. The project includes research on the human-centered computing aspects of this sociocomputational system, and thus can inspire future citizen science projects that do not merely exploit the labor of volunteers but engage them as partners in scientific discovery. Therefore, the project will have substantial educational benefits for the volunteers, who will gain a good understanding on how science works, and will be a part of the excitement of opening up a new window on the universe.
This is an innovative, interdisciplinary collaboration between the existing LIGO, at the time it is being technically enhanced, and Zooniverse, which has fielded a workable crowdsourcing model, currently involving over a million people on 30 projects. The work will help aLIGO to quickly identify noise and artifacts in the science data stream, separating out legitimate astrophysical events, and allowing those events to be distributed to other observatories for more detailed source identification and study. This project will also build and evaluate an interface between machine learning and human learning that will itself be an advance on current methods. It can be depicted as a loop: (1) By sifting through enormous amounts of aLIGO data, the citizen scientists will produce a robust "gold standard" glitch dataset that can be used to seed and train machine learning algorithms that will aid in the identification task. (2) The machine learning protocols that select and classify glitch events will be developed to maximize the potential of the citizen scientists by organizing and passing the data to them in more effective ways. The project will experiment with the task design and workflow organization (leveraging previous Zooniverse experience) to build a system that takes advantage of the distinctive strengths of the machines (ability to process large amounts of data systematically) and the humans (ability to identify patterns and spot discrepancies), and then using the model to enable high quality aLIGO detector characterization and gravitational wave searches
DATE:
-
TEAM MEMBERS:
Vassiliki KalogeraAggelos KatsaggelosKevin CrowstonLaura TrouilleJoshua SmithShane LarsonLaura Whyte
The HOWL science team set out to analyze the quality of the Hofmann Forest’s watershed in order to understand the Hofmann’s place in the coastal ecosystem as a whole and how its quality would affect the surrounding human and ecological community. However, we realized quickly that we would need help collecting hundreds of stream water samples and observations, and so we partnered with the Izaak Walton League to help us contact and get local community members involved in such an overwhelming task. Local volunteers will not only help collect samples for this large-scale citizen science project, but will also help us try out some new equipment for water sampling and testing. And so, along with your help, the HOWL Project will:
Gain knowledge of water quality, and quantity, of the White Oak, New, and Trent Rivers in the Hofmann Forest in Eastern NC.
Demonstrate the feasibility of using low-cost analytical equipment for water quality testing.
Increase understanding of North Carolina’s rapidly changing coast due to the threats of sea-level rise, deforestation, agricultural expansion, and new substantial developments.
DATE:
-
TEAM MEMBERS:
Meredith HovisFrederick CubbageMadhusudan KattiKathleen McGinley
NASA's Universe of Learning provides resources and experiences that enable diverse audiences to explore fundamental questions in astronomy, experience how science is done, and discover the universe for themselves. Using its direct connection to science and science experts, NASA's Universe of Learning creates and delivers timely and authentic resources and experiences for youth, families, and lifelong learners. The goal is to strengthen science learning and literacy, and to enable learners to discover the universe for themselves in innovative, interactive ways that meet today's 21st century needs. The program includes astronomical data tools, multimedia resources, exhibits and community programs, and professional learning experiences for informal educators. It is developed through a unique partnership between the Space Telescope Science Institute, Caltech/IPAC, the Jet Propulsion Laboratory, the Smithsonian Astrophysical Observatory, and Sonoma State University.
DATE:
-
TEAM MEMBERS:
Denise SmithGordon SquiresKathy LestitionAnya BifernoLynn Cominsky
resourceprojectProfessional Development, Conferences, and Networks
This project supports the Broader Impacts and Outreach Network for Institutional Collaboration (BIONIC), a national Research Coordination Network of Broader Impacts to support professionals who assist researchers to design, implement, and evaluate the Broader Impacts activities for NSF proposals and awards. All NSF proposals are evaluated not only on the Intellectual Merit of the proposed research, but also on the Broader Impacts of the proposed work, such as societal relevance, educational outreach, and community engagement. Many institutions have begun employing Broader Impacts support professionals, but in most cases, these individuals have not worked as a group to identify and share best practices. As a consequence, there has been much duplication of effort. Through coordination, BIONIC is expected to improve efficiency, reduce redundancy, and have significant impact in several areas: 1) Researchers will benefit from an increased understanding of the Broader Impacts merit review criterion and increased access to collaborators who can help them design, implement, and evaluate their Broader Impacts activities; 2) Institutions and research centers will increase their capacity to support Broader Impacts via mentoring for Broader Impacts professionals and consulting on how to build Broader Impacts support infrastructure, with attention to inclusion of non-research-intensive universities, Historically Black Colleges and Universities, and Hispanic- and Minority-Serving Institutions that may not have the resources to support an institutional Broader Impacts office; and 3) NSF, itself, will benefit from a systematic and consistent approach to Broader Impacts that will lead to better fulfillment of the Broader Impacts criterion by researchers, better evaluation of Broader Impacts activities by reviewers and program officers, and a system for evaluating the effectiveness of Broader Impacts activities in the aggregate, as mandated by Congress and the National Science Board. Through its many planned activities, BIONIC will ultimately help advance the societal aims that the Broader Impacts merit review criterion was meant to achieve.
The main goals of the project will be accomplished through the four specific objectives: 1) Identify and curate promising models, practices, and evaluation methods for the Broader Impacts community; 2) Expand engagement in, and support the development of, high-quality Broader Impacts activities by educating current and future faculty and researchers on effective practices; 3) Develop the human resources necessary for sustained growth and increased diversity of the Broader Impacts community; and 4) Promote cross-institutional collaboration and dissemination for Broader Impacts programs, practices, models, materials, and resources. BIONIC will facilitate collaborative Broader Impacts work across institutions, help leverage previously developed resources, support professional development, and train new colleagues to enter into the Broader Impacts field. This project will improve the quality and sustainability of Broader Impacts investments, as researchers continue to create unique and effective activities that are curated and broadly disseminated. BIONIC will create a network designed to assist NSF-funded researchers at their institutions in achieving the goals of the Broader Impacts Review Criterion. In so doing, BIONIC will promote Broader Impacts activities locally, nationally, and internationally and help to advance the Broader Impacts field.
This award is co-funded by the Divisions of Molecular and Cellular Biosciences and Emerging Frontiers in the Directorate for Biological Sciences and by the Division of Chemistry in the Directorate for Mathematics and Physical Sciences.
This project, a collaboration of faculty at Pratt Institute and Oregon State University, will explore how people with low to no affinity for science, technology, engineering and math (STEM) can be introduced to STEM ideas in ways that are appropriate for their cultural identity and designed to achieve reasonable outcomes that allow for continued STEM engagement. This project will study a new model, as a small scale exemplar of how science learning can be integrated into cultural events that attract audiences who do not identify themselves as interested in science or broader concepts associated with STEM. The model integrates science with art, music and play, producing live events, games, hands-on workshops, and interactive theater productions that are intended to inspire wonder and excitement. The basic principles are: to create unique opportunities for audiences to experience science in unorthodox ways, to connect with audiences at these events, and to help scientists engage a public they do not normally reach.
The goal of this project is to formally study and improve upon the practices that have been explored to date by carefully examining the implementation at two annual FIGMENT arts festivals in New York City and to determine outcomes based on three theoretical frameworks: the six strands of science engagement proposed by the National Research Council, the concept of follow-up activity, and subsequent reinforcing experiences. Initial evaluation results indicate the model is effective in advancing informal STEM learning and providing valuable public engagement with science training and experience for scientists. Participating scientists succeed in creating interest and attentiveness in audiences that do not normally engage in science, thereby opening the door for subsequent experiences. The research will be a quasi-experimental approach to test the degree to which encounters with model's learning experiences create a higher probability to actively seek subsequent science experiences. Project deliverables include a how-to guide for professionals on expanding STEM audiences targeted at cultural institutions who want to incorporate science content into their activities, and for other institutions who want to integrate their activities into cultural settings. The how-to guide will be based on the body of research and evaluations developed that will illuminate the principles behind the model.
This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This RAPID project was submitted in response to the NSF Dear Colleague letter (NSF 17-128) related to Hurricane Harvey along the Gulf Coast. The PBS NewsHour team will produce 9 stories for national distribution using multiple broadcast and online channels that will engage the public and increase their understanding of the science and engineering research being conducted to better predict and mitigate the impact of future storms. Hurricane Harvey was the first of several storms in 2017 that hit first Texas then Florida and the Caribbean creating unprecedented devastation. This project aims to help the public better understand the science behind storms, and how scientists and engineers are actively collecting data, developing new models, using new technologies, and studying the environmental recovery. The PBS NewsHour team has in place experienced science journalists, production facilities, and a distribution network that can quickly develop media stories based on the work of scientists and engineers in the field, many of whom are funded by NSF. The NewsHour has a strong track record of telling stories that are scientifically accurate yet highly engaging and understandable to a diverse audience. Researchers from several universities including Texas A&M, Rice University, and Norfolk State University are advising the NewsHour team and may also be featured in some of the media. The team will also use their existing collaboration with education researchers at New Knowledge, Inc. to seek audience feedback on proposed/produced media.
The potential audience reach of these stories is extensive. Stories that are broadcast on the nightly PBS NewsHour reach 1.6 million people. The NewsHour's website currently reaches 6 million while their YouTube channel has 40 million views. They have a growing audience of younger viewers who mainly get their news on social media channels such as ScienceScope and Apple News. EXTRA is another service offered just for teachers.