RISES (Re-energize and Invigorate Student Engagement through Science) is a coordinated suite of resources including 42 interactive English and Spanish STEM videos produced by Children's Museum Houston in coordination with the science curriculum department at Houston ISD. The videos are aligned to the Texas Essential Knowledge and Skills standards, and each come with a bilingual Activity Guide and Parent Prompt sheet, which includes guiding questions and other extension activities.
Through Project BUILD, a STAR Library Network (STAR Net) program funded by the National Science Foundation, the American Society of Civil Engineers (ASCE) and the Space Science Institute’s National Center for Interactive Learning (NCIL) offered the virtual Dream, Build, Create program which consisted of (1) the award-winning documentary Dream Big: Engineering Our World and (2) five live-streamed panels of diverse engineers (Dream Teams) who shared their stories of what it means to be an engineer.
The external evaluation, conducted by Education Development Center (EDC), aimed to examine how
Virtual Reality (VR) shows promise to broaden participation in STEM by engaging learners in authentic but otherwise inaccessible learning experiences. The immersion in authentic learner environments, along with social presence and learner agency, that is enabled by VR helps form memorable learning experiences. VR is emerging as a promising tool for children with autism. While there is wide variation in the way people with autism present, one common set of needs associated with autism that can be addressed with VR is sensory processing. This project will research and model how VR can be used to minimize barriers for learners with autism, while also incorporating complementary universal designs for learning (UDL) principles to promote broad participation in STEM learning. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. This project will build on a prototype VR simulation, Mission to Europa Prime, that transports learners to a space station for exploration on Jupiter's moon Europa, a strong candidate for future discovery of extraterrestrial life and a location no human can currently experience in person. The prototype simulation will be expanded to create a full, immersive STEM-based experience that will enable learners who often encounter cognitive, social, and emotional barriers to STEM learning in public spaces, particularly learners with autism, to fully engage and benefit from this STEM-learning experience. The simulation will include a variety of STEM-learning puzzles, addressing science, mathematics, engineering, and computational thinking through authentic and interesting problem-solving tasks. The project team's learning designers and researchers will co-design puzzles and user interfaces with students at a post-secondary institute for learners with autism and other learning differences. The full VR STEM-learning simulation will be broadly disseminated to museums and other informal education programs, and distributed to other communities.
Project research is designed to advance knowledge about VR-based informal STEM learning and the affordances of VR to support learners with autism. To broaden STEM participation for all, the project brings together research at the intersection of STEM learning, cognitive and educational neuroscience, and the human-technology frontier. The simulation will be designed to provide agency for learners to adjust a STEM-learning VR experience for their unique sensory processing, attention, and social anxiety needs. The project will use a participatory design process will ensure the VR experience is designed to reduce barriers that currently exclude learners with autism and related conditions from many informal learning opportunities, broadening participation in informal STEM learning. Design research, usability, and efficacy studies will be conducted with teens and adults at the Pacific Science Center and Boston Museum of Science, which serve audiences with autism, along with the general public. Project research is grounded in prior NSF-funded research and leverages the team's expertise in STEM learning simulations, VR development, cognitive psychology, universal design, and informal science education, as well as the vital expertise of the end-user target audience, learners with autism. In addition to being shared at conferences, the research findings will be submitted for publication to peer-reviewed journals for researchers and to appropriate publications for VR developers and disseminators, museum programs, neurodiverse communities and other potentially interested parties.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Teon EdwardsJodi Asbell-ClarkeJamie LarsenIbrahim Dahlstrom-Hakki
The making and tinkering movement has become increasingly mainstream over the past decade, pioneered in part through the popularity of magazines like `Make', events such as Maker Faire and DIY websites including `Instructables'. Science centres and museums have been developing their own ideas, notably the Tinkering Studio at the Exploratorium. In this commentary piece, we reflect on why this movement has a strong appeal for the Life Science Centre in Newcastle upon Tyne and why we are in the process of developing a new making and tinkering space to help us enact our centre's vision to `Enrich
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.
The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE:
-
TEAM MEMBERS:
Aristides MarcanoMohammed KhanGulnihal OzbayGabriel Gwanmesia
Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
This report introduces a framework to support learning in library and museum makerspaces. The framework demonstrates how we can create the conditions for ambitious learning experiences to unfold within the making experience.
DATE:
TEAM MEMBERS:
Children's Museum of PittsburghInstitute of Museum and Library ServicesPeter Wardrip
In this essay, Shirin Vossoughi, Paula Hooper, and Meg Escude advance a critique of branded, culturally normative definitions of making and caution against their uncritical adoption into the educational sphere. The authors argue that the ways making and equity are conceptualized can either restrict or expand the possibility that the growing maker movement will contribute to intellectually generative and liberatory educational experiences for working-class students and students of color. After reviewing various perspectives on making as educative practice, they present a framework that treats
Maker Corps is a program delivered by the Maker Education Initiative (Maker Ed) to increase organizational capacity to develop and deliver maker programing. Since its inception in 2013, the program has grown to support over 100 organizations by providing professional development, connections to a community of other maker educators and individualized support. Over time the program elements have changed in response to feedback from participants, collaboration with evaluators and shifts in focus for Maker Ed’s goals. In the spirit of maker education – tinkering, observing, responding, iterating –
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.
The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE:
-
TEAM MEMBERS:
Steven StochajPatricia SullivanLuis Vazquez
Pacific Science Center (Science Center) has been a pillar of science education programming in Seattle, Washington since 1962. Through interactive exhibits, planetarium shows, IMAX movies and outreach, the Science Center works to inspire a lifelong interest in science, math and technology. In 2010, the Science Center joined forces with the National Aeronautics and Space Administration (NASA) through NASA Now: Using Current Data, Planetarium Technology and Youth Career Development to Connect People to the Universe. NASA Now was designed to increase the awareness, knowledge and understanding of
This guide offers an introduction to collaborations between museums and youth-serving community organizations. While this guide is designed specifically for museums and community organizations, much of the content contained in this document can be applied to all kinds and levels of partnerships. This guide includes an overview of why to collaborate, levels of partnerships, how to start a partnership, and a variety of resources to sustain and deepen your collaborative relationships. Sprinkled throughout this document is advice from experienced collaborators as well as examples of different ways