The Marian Koshland Science Museum will produce a 1,500-square-foot exhibit on infectious disease aimed at a teen and adult audience. The exhibit will focus on three concepts: (1) How infectious disease affects individuals, society, and the environment; (2) What actions can be taken to modify the impact of infectious disease; and (3) What benefits and consequences there are to both action and inaction. These concepts will be explained using interactive displays, with emphasis on the use of current science and science-based decision support tools. The Koshland will develop public programs, educational materials aimed at grades 7-12, hands-on science activities, and audio and video guides to support the exhibit. An exhibit on infectious disease is relevant because of the continuing burden and increasing threat of disease worldwide. A greater understanding of recent scientific advances will help the public make decisions about their health and the health of their community.
Working in collaboration with biomedical researchers from universities in the San Francisco area, across the nation, and abroad, the Exploratorium proposes to develop a high-quality microscopic imaging station for use by museum visitors, students, teachers and Internet visitors. This facility will utilize the highest quality optics and state-of-the-art microscopic techniques including biological staining and sophisticated digital recording. A variety of living specimens fundamental to basic biology, human development, the human genome and health-related research will be displayed. The station will be the lively center of the life sciences' area at the Exploratorium, providing educational content, dramatic imagery and regular demonstrations to reach an audience which ranges from the mildly curious to research scientists. In addition, the Exploratorium will be the first public institution, outside of a few research laboratories, to present live microscopic specimens via video and the Internet in real time. (To date, remote microscopes have generally presented inanimate objects or fixed tissue.) In order to increase student accessibility, subject matter for the imaging station will be integrated into the ongoing middle and high school teacher professional development at the museum. Teachers will be able to use the imaging station to conduct their own experiments, develop classroom explorations, take away images, access the website in their classrooms, or share materials with other teachers.
In this memo, we present a first version of the conceptual framework funded by the John D. and Catherine T. Macarthur Foundation. Our goal is to provide clarity around issues of scale and spread, and to develop a tool that can inform strategic thinking by members of the DML (Digital Media and Learning) community and the broader field. At the heart or the conceptual framework is a typology of conceptions of scale. Our interviews and literature review suggest that there are fundamentally different ways of conceptualizing the goals or outcomes of scale. We identify four: adoption, replication
DATE:
TEAM MEMBERS:
Cynthia CoburnAmy CattersonJenni HiggsKatie MertzRichard Morel
The Maryland Science Center, in cooperation with the Johns Hopkins Medical Institutions (JHMI) and the University of Maryland, Baltimore, developed and produced BodyLink, a unique health sciences update center. The group did so with support from the National Institutes of Health SEPA (Science Education Partnership Award) Program, BodyLink, which is modeled after the Maryland Science Center's praised SpaceLink space science update center, will make today's medical and health news clear and relevant for visitors, young and old. Science and technology centers have long struggled with ways to acquaint visitors with the latest and greatest discoveries in health and biomedical science, and to interpret the significance of these findings for all ages. Museums can no longer be content with presenting only basic science, and need to expand their role as public communicators of science by presenting cutting-edge research, and by interpreting and explaining this information for visitors. BodyLink is a 1,500-square foot multimedia center where visitors can discover and appreciate the wonders of cutting-edge medical research (basic research, as well as clinical research) through interactive exhibits, stunning imagery, and facilitated demonstrations in a multimedia driven programmable space. BodyLink also includes WetLab, an open-access microbiology laboratory facility that allows visitors to conduct scientific investigations using state-of-the art research technology. Visitors can extract DNA from wheat germ, test common anti-microbial products on live bacteria, and learn Gram staining techniques, among other activities. Bodying will further serve school groups, general museum visitors, and remote-learning participants through the interactive website. BodyLink also incorporates an internship program for graduate students from the Maryland Science Center's collaborating universities. These internships give the graduate students an opportunity to interact with the general public to enhance their scientific communication skills and give them first-hand experience with investigating public understanding of scientific research.
The National Research Council's Roundtable on Public Interfaces of the Life Sciences held a 2-day workshop on January 15-16, 2015, in Washington, DC to explore the public interfaces between scientists and citizens in the context of genetically engineered (GE) organisms. The workshop presentations and discussions dealt with perspectives on scientific engagement in a world where science is interpreted through a variety of lenses, including cultural values and political dispositions, and with strategies based on evidence in social science to improve public conversation about controversial topics
Fusion Science Theater (FST) uses elements of playwriting to make informal science education more engaging as well as educational. FST shows incorporate an overarching scientific question that is asked and then answered by a series of participatory exercises and demonstrations. The shows also use “embedded assessment” of learning, which asks children to “vote their prediction” both before and after these activities. The FST National Training and Dissemination Program had three major goals: (1) To develop and implement a Performance Training Program to train professional audiences to perform
DATE:
TEAM MEMBERS:
Madison Area Technical CollegeJoanne Cantor
The Royal Society of Chemistry commissioned TNS BMRB to conduct this research to provide well-grounded, robust data on the public’s relationship with chemistry in the UK. This programme of research aimed to understand where people are now, explore what drives people's views, identify windows of opportunity, and use evidence to produce guidance on opportunities and challenges in communicating chemistry to the public.
More and more young people are learning about science, technology, engineering, and mathematics (STEM) in a wide variety of afterschool, summer, and informal programs. At the same time, there has been increasing awareness of the value of such programs in sparking, sustaining, and extending interest in and understanding of STEM. To help policy makers, funders and education leaders in both school and out-of-school settings make informed decisions about how to best leverage the educational and learning resources in their community, this report identifies features of productive STEM programs in
In this case study, Calabrese Barton and Yang describe how a young person’s strong interest in science (specifically reptiles) outside of school went unrecognized by his school teachers and his family as an aptitude for science. The authors describe how the prevailing view of science, framed in the context of the culture of power, can narrow learners’ perceived opportunities to pursue academic or professional pathways in science.
DATE:
TEAM MEMBERS:
Nicole Bulalacao
resourceresearchProfessional Development, Conferences, and Networks
This document provides graphic representations from the NSF INCLUDES Workshop held on June 3, 2015 in Arlington, VA. The purpose of the workshop was to think about the broadening participation ecosystem through the lens of collective impact and catalytic innovation, in order to develop ideas, strategies, and actions that will alter the current landscape and result in scalable solutions for the inclusion of people from all sectors of American society to engage in STEM careers.
In this article the authors discuss the importance of the use of natural instincts in teaching and studying science, technology, engineering, and mathematics (STEM) courses in U.S. middle and high schools. They present information on the Maker Movement, a campaign associated with the Maker Faire festivals and "Make" magazine, which encourages the use of creativity in STEM fields. Other topics include the importance of natural curiosity, building, and inventions in science education.
The article discusses the Maker Faires, a hybrid of science fairs, craft shows, and county fairs where people come to display what they have created and talk about what they learned. The faires are designed for people who work in places such as shops, garages, kitchen tables, schools, or science clubs, while they invent and innovate with new technologies, science, engineering, art performance and various crafts. The events' impact on economic development and education is mentioned.