This three-year project focuses on professional research experiences for middle and high school STEM teachers through investigations of the Great American Biotic Interchange (GABI). Each year 10 teachers (in diverse fields including biology, chemistry, earth and environmental sciences, and oceanography) and three to five professional paleontologists will participate in a four-phase process of professional development, including: a (1) pre-trip orientation (May); (2) 12 days in Panama in July collecting fossils from previously reported, as well as newly discovered, sites; (3) a post-trip on-line (cyber-enabled) Community of Practice; and (4) a final wrap-up at the end of each cohort (December). In addition, some of the teachers may also elect to partner with scientists in their research laboratories, principally located in California, Florida, and New Mexico. The partners in Panama are from the Universidad Autónoma de Chiriquí (UNACHI), including faculty and students, as well as STEM teachers from schools in Panama. Teachers that participate in this RET will develop lesson plans related to fossils, paleontology, evolution, geology, past climate change, and related content aligned with current STEM standards.
The GABI, catalyzed by the formation of the Isthmus of Panama during the Neogene, had a profound effect on the evolution and geography of terrestrial organisms throughout the Americas and marine organisms globally. For example, more than 100 genera of terrestrial mammals dispersed between the Americas, and numerous marine organisms had their interoceanic distributions cut in half by the formation of the Isthmus. Rather than being considered a single event that occurred about 4 million years ago, the GABI likely represents a series of dispersals over the past 10 million years, some of which occurred before full closure of the Isthmus. New fossil discoveries in Panama resulting from the GABI RET (Research Experiences for Teachers) are thus contributing to the understanding of the complexity and timing of the GABI during the Neogene.
This award is being co-funded with the Office International and Integrative Activities.
For public health to improve, all sectors of society much have access to the highest quality health science news and information possible. How that information is translated, packaged and disseminated is important: the stories matter. Our journalism and mentoring program will grow the health science literacy of the nation by building the next generation of science communicators, ensuring that cadre of youth from historically disadvantaged groups have the discipline, creativity and critical thinking skills needed to be successful health science-literate citizens and advocates within their own communities.
Using a combination of youth-generated videos, broadcast reporting and online curriculum resources, PBS NewsHour will engineer successful educational experiences to engage students from all backgrounds, and particularly underserved populations, to explore clinical, biomedical, and behavioral research. The PBS NewsHour’s Student Reporting Labs program, currently in 41 states, will create 10 health science reporting labs to produce unique news stories that view health and science topics from a youth perspective. We will incorporate these videos into lesson plans and learning tools disseminated to the general public, educators and youth media organizations. Students will be supported along the way with curricula and mentorship on both fundamental research and the critical thinking skills necessary for responsible journalism. This process will ensure the next generation includes citizens who are effective science communicators and self-motivated learners with a deep connection to science beyond the textbook and classroom.
PBS NewsHour will develop a STEM-reporting curriculum to teach students important research skills. The program will include activities that expose students to careers in research, highlight a diverse assortment of pioneering scientists as role models and promote internship opportunities. The resources will be posted on the PBS NewsHour Extra site which has 170,000 views per month and our partner sites on PBS Learning Media and Share My Lesson—the two biggest free education resource sites on the web—thus greatly expanding the potential scope of our outreach and impact.
NewsHour broadcast topics will be finalized through our advisory panel and the researchers interviewed for the stories will be selected for their expertise and skills as effective science communicators, as well as their diversity and ability to connect with youth. Finally, we will launch an outreach and community awareness campaign through strategic partnerships and coordinated cross promotion of stories through social media platforms.
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by engaging in hands-on field experience, laboratory/project-based entrepreneurship tasks and mentorship experiences.
Twin Cities Public Television project on Gender Equitable Teaching Practices in Career and Technical Education Pathways for High School Girls is designed to help career and technical education educators and guidance counselors recruit and retain more high school girls from diverse backgrounds in science, technology, engineering and math (STEM) pathways, specifically in technology and engineering. The project's goals are: 1) To increase the number of high school girls, including ethnic minorities, recruited and retained in traditionally male -STEM pathways; 2) To enhance the teaching and coaching practices of Career and Technical Education educators, counselors and role models with gender equitable and culturally responsive strategies; 3) To research the impacts of strategies and role model experiences on girls' interest in STEM careers; 4) To evaluate the effectiveness of training in these strategies for educators, counselors and role models; and 5) To develop training that can easily be scaled up to reach a much larger audience. The research hypothesis is that girls will develop more positive STEM identities and interests when their educators employ research-based, gender-equitable and culturally responsive teaching practices enhanced with female STEM role models. Instructional modules and media-based online resources for Minnesota high school Career and Technical Education programs will be developed in the Twin Cities of Minneapolis and St. Paul and piloted in districts with strong community college and industry partnerships. Twin Cities Public Television will partner with STEM and gender equity researchers from St. Catherine University in St. Paul, the National Girls Collaborative, the University of Colorado-Boulder (CU-Boulder), the Minnesota Department of Education and the Minnesota State Colleges and Universities System.
The project will examine girls' personal experiences with equitable strategies embedded into classroom STEM content and complementary mentoring experiences, both live and video-based. It will explore how these experiences contribute to girls' STEM-related identity construction against gender-based stereotypes. It will also determine the extent girls' exposure to female STEM role models impact their Career and Technical Education studies and STEM career aspirations. The study will employ and examine short-form autobiographical videos created and shared by participating girls to gain insight into their STEM classroom and role model experiences. Empowering girls to respond to the ways their Career and Technical Education educators and guidance counselors guide them toward technology and engineering careers will provide a valuable perspective on educational practice and advance the STEM education field.
BioEYES, a nonprofit outreach program using zebrafish to excite and educate K–12 students about science and how to think and act like scientists, has been integrated into hundreds of under-resourced schools since 2002. During the week-long experiments, students raise zebrafish embryos to learn principles of development and genetics. We have analyzed 19,463 participating students’ pre- and post-tests within the program to examine their learning growth and attitude changes towards science. We found that at all grade levels, BioEYES effectively increased students’ content knowledge and produced
MobiLLab is a mobile science education program designed to awaken young people’s interest in science and technology (S&T). Perceived novelty, or unfamiliarity, has been shown to affect pupils’ educational outcomes at similar out-of-school learning places (OSLePs) such as museums and science centers. A study involved 215 mobiLLab pupils who responded to three surveys: a pre-preparation, at-visit, and post-visit survey. Results provide evidence for four dimensions of pupils’ at-visit novelty: curiosity, exploratory behavior, oriented feeling, and cognitive load. Findings also show that classroom
MobiLLab is a mobile science education program designed to awaken young people’s interest in science and technology (S&T). To guide program development, mobiLLab leaders sought to identify and assess meaningful indicators of program effectiveness. Through an exploratory background investigation, we identified the following indicators: participant satisfaction; usefulness of classroom preparation materials; and pupils’ outcomes (S&T interest, attitude and self-concept). Results of a mixed-methods pilot investigation indicated that pupils and teachers are satisfied with their mobiLLab
The Discovery Research K-12 program (DR-K12) seeks to significantly enhance the learning and teaching of science, technology, engineering and mathematics (STEM) by preK-12 students and teachers, through research and development of innovative resources, models and tools (RMTs). Projects in the DRK-12 program build on fundamental research in STEM education and prior research and development efforts that provide theoretical and empirical justification for proposed projects. This project scales up the PBS NewsHour Student Reporting Labs (SRL), a model that trains teens to produce video reports on important STEM issues from a youth perspective. Participating schools receive a SRL journalism and digital media literacy curriculum, a mentor for students from a local PBS affiliate, professional development for educators, and support from the PBS NewsHour team. The production of news stories and student-oriented instruction in the classroom are designed to increase student learning of STEM content through student-centered inquiry and reflections on metacognition. Students will develop a deep understanding of the material to choose the best strategy to teach or tell the STEM story to others through digital media. Over the 4 years of the project, the model will be expanded from the current 70 schools to 150 in 40 states targeting schools with high populations of underrepresented youth. New components will be added to the model including STEM professional mentors and a social media and media analytics component. Project partners include local PBS stations, Project Lead the Way, and Share My Lesson educators.
The research study conducted by New Knowledge, LLC will add new knowledge about the growing field of youth science journalism and digital media. Front-end evaluation will assess students' understanding of contemporary STEM issues by deploying a web-based survey to crowd-source youth reactions, interest, questions, and thoughts about current science issues. A subset of questions will explore students' tendencies to pass newly-acquired information to members of the larger social networks. Formative evaluation will include qualitative and quantitative studies of multiple stakeholders at the Student Reporting Labs to refine the implementation of the program. Summative evaluation will track learning outcomes/changes such as: How does student reporting on STEM news increase their STEM literacy competencies? How does it affect their interest in STEM careers? Which strategies are most effective with underrepresented students? How do youth communicate with each other about science content, informing news media best practices? The research team will use data from pre/post and post-delayed surveys taken by 1700 students in the STEM Student Reporting Labs and 1700 from control groups. In addition, interviews with teachers will assess the curriculum and impressions of student engagement.
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.
The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.
The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE:
-
TEAM MEMBERS:
Maritza MacdonaldMeryle WeinsteinRosamond KinzlerMordecai-Mark Mac LowEdmond MathezDavid Silvernail
resourceprojectProfessional Development and Workshops
This is an "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot that will implement a plan to assess the feasibility of a strategy designed to ensure high levels of improvement in K-12 grade students' mathematics achievement. The plan will focus on an often-neglected group of students--those who have been performing at the lowest quartile on state tests of mathematics, including African American, Hispanic, Native American, students with disabilities, and those segregated in urban and rural communities across the country. The project will draw on lessons learned from the nation's Civil Rights Movement and a community-organizing strategy learned during the struggle to achieve voting rights for African Americans. The Algebra Project (AP) is a national, nonprofit organization that uses mathematics as an organizing tool to ensure quality public school education for every child in America; it believes that every child has a right to a quality education to succeed in this technology-based society. AP's unique approach to school reform intentionally develops sustainable, student-centered models by building coalitions of stakeholders within the local communities, particularly the historically underserved populations. The AP works to change the deeply rooted social attitudes that encourage the disenfranchisement of a third of the nation's population. It delivers a multi-pronged approach to build demand for and support of quality public schools, including research and development, school development, and community development education reform efforts through K-12 initiatives.
The Algebra Project and the Young People's Project (YPP) will join efforts to bring together over 70 individuals and organizations, including 17 universities of which 8 are Historical Black Colleges and Universities, school districts, mathematics educators, and researchers to examine their experiences, and use collective learning to refine and hone strategies that they have piloted and tested to promote mathematics inclusion. The role of YPP in the proposed project will be to organize and facilitate the youth component, such that project activities reflect the language and culture of students, continuously leveraging and building upon their voice, creative input, and ongoing feedback. YPP will conduct workshops for students organized around math-based games that provide collective experiences in which student learning requires individual reflection, small group work, teamwork and discussion. The proposed work will comprise the design of effective learning opportunities; building and supporting a cadre of teachers who can effectively work with students learning under the proposed approach; using technologies to enhance teaching and learning; and utilizing evaluation and research to drive continuous improvement. Because bringing together an effective network with diverse expertise to collaborate towards national impact requires expert facilitation processes, the project will establish working groups around three major principles: (1) Organizing from the bottom up through students, their teachers, and others in local communities committed to their education, allied with individuals and organizations who have expertise and dedication for achieving the stated goals, can produce significant progress and the conditions for collective impact; (2) Effective learning materials and formal and informal learning opportunities in mathematics can be designed and implemented for students performing in the bottom academic quartile; and (3) Teachers and other educators can become more proficient and more confident in their capacity to produce students who are successful in learning the level of mathematics required for full participation in STEM. The working groups will also be tasked to consider two cross-cutting topics: (a) the communication structures and technologies needed to operate and expand the present network, and to create the "backbone" and other structures needed to operate and expand the network; and (b) the measurements and metrics for major needs, such as assessing students' mathematics literacy, socio-emotional development in specified areas; teachers' competencies; as well as the work of the network. The final product of this plan will be a "Theory of Collective Action and Strategic Plan". The plan will contain recommendations for collective actions needed in order for the current network to coordinate, add appropriate partners, develop the needed backbone structures, and become an NSF Alliance for national impact on the broadening participation challenge of improving the mathematics achievement. An external evaluator will conduct both formative and summative aspects of this process.
DATE:
-
TEAM MEMBERS:
Robert MosesNell CobbGregory BudzbanMaisha MosesWilliam Crombie
Community colleges play a vital role in educating undergraduate students. These higher education institutions educate nearly half of the nation's undergraduate students, particularly among low-income and first-generation students and students of color. Because of the rich diversity that currently exists at these institutional-types, there are immense opportunities to broadening participation throughout the engineering enterprise. To this end, the investigator outlines a joint collaboration with five community colleges, three school systems, two college career academies, and a state partner in Georgia - referred as the Georgia Science, Technology, and Engineering Partnerships for Success (GA STEPS) - to provide dual enrollment classes in career pathways for Georgia high school students in grades 9-12, thereby allowing secondary students to earn college credit. The Georgia STEPS program proposes to leverage mechatronics engineering as a means for broadening engineering participation for community colleges and underserved, underrepresented populations in 48 rural counties to increase engineering awareness, skills training and college and career readiness. The project builds on an existing collaboration that has developed successful engineering opportunities at the community college level, by including a wider regional network of rural Georgia counties and high schools. Further, this project has immense potential to transform engineering education and course-taking for students at the secondary and postsecondary level in Georgia and beyond. It has potential great potential to be scaled and replicated at other placed around the United States.
The project's intellectual merit and innovation is that it leverages a successful mechatronics engineering curriculum that supports engineering skills that support local industry as well as supporting innovations in the mechatronics field. The project includes a collective impact framework, involving various stakeholders and aligning quantitative and qualitative metrics and measurable objectives. The broader impacts of this project is that it increases the engineering knowledge and skills of underserved, underrepresented students that are enrolled in community colleges. Also, the impact to rural communities in Georgia support the fact that this project would meet broader groups that can be positively impacted by this type of collaborative. The ability to provide different parts of this engineering discipline across broad audiences in community colleges - that support underrepresented groups understanding of mechatronics engineering - is broadly useful to the field of engineering.
MobiLLab is a mobile science education program designed to awaken young people’s interest in science and technology (S&T). Perceived novelty, or unfamiliarity, has been shown to affect pupils’ educational outcomes at similar out-of-school learning places (OSLePs) such as museums and science centers. A study involved 215 mobiLLab pupils who responded to three surveys: a pre-preparation, at-visit, and post-visit survey. Results provide evidence for four dimensions of pupils’ at-visit novelty: curiosity, exploratory behavior, oriented feeling, and cognitive load. Findings also show that classroom
This longitudinal research study will contribute to a broader understanding of the pathways of STEM-interested high school students from underrepresented groups who plan to pursue or complete science studies in their post-high school endeavors. The project will investigate the ways that formative authentic science experiences may support youth's persistence in STEM. The study focuses on approximately 900 urban youth who are high interest, high potential STEM students who participate in, or are alumni of, the Science Research Mentoring Program. This program provides intensive mentoring for high school youth from groups underrepresented in STEM careers. It takes place at 17 sites around New York City, including American Museum of Natural History, which is the original program site. Identifying key supports and obstacles in the pathways of high-interest, under-represented youth towards STEM careers can help practitioners design more inclusive and equitable STEM learning experiences and supports. In this way, the project will capitalize on student interest so that students with potential continue to persist.
In order to understand better the factors that influence these students, this research combines longitudinal social network and survey data with interviews and case studies, as well as an analysis of matched student data from New York City Public Schools' records. The research questions in the study are a) how do youths' social networks develop through their participation in scientists' communities of practice? b) what is the relationship between features of the communities of practice and youths' social networks, measures of academic achievement, and youths' pursuit of a STEM major? and c) what are the variations in youth pathways in relationship to learner characteristics, composition of social networks, and features of the community of practice? The research design allows for a rich, layered perspective of student pathways. In particular, by employing social network analysis, this study will reveal relational features of persistence that may be particularly critical for underrepresented youth, for whom STEM role models and cultural brokers provide an otherwise unavailable sense of belonging and identity in STEM. The study will also access a New York City Public Schools data set comprised of student-level records containing biographical and demographic variables, secondary and postsecondary course enrollment and grades, exam scores, persistence/graduation indicators, linked responses to post-secondary surveys, and post-education employment records and wages. These data enable examination of inter-relationships between in-school achievement and out-of-school STEM experiences through comparison of program participants to similar non-participant peers. This project is supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.