Skip to main content

Community Repository Search Results

resource evaluation Media and Technology
Media MashUp (MMU) was an IMLS funded project (LG-07-08-0113 ) designed to help libraries build capacity for offering computer-based programs for youth. These programs were designed to help foster 21st Century literacy skills. The program focused on the Scratch programming language (http://scratch.mit.edu/), but also used other creative freeware programs (i.e., Audacity, Picasa, SAM animation, ArtRage). MMU was a partnership among six library systems from around the country and The Science Museum of Minnesota. Three staff members from each library participated in the program: two librarians or
DATE:
TEAM MEMBERS: Molly Phipps Hennepin County Library
resource evaluation Media and Technology
The Media MashUp project is funded by the IMLS (Grant LG-07-08-0113 ) to build capacity at libraries for computer-based programs for youth that help build 21st Century literacy skills. Twenty first Century literacy skills include interactive engagement with technology, collaboration and team problem solving, taking initiative and managing time and the use of higher level processing skills (www.21stcenturyskills.org/). This project uses the Scratch programming platform (http://scratch.mit.edu/) developed at MIT to help foster youth's 21st Century literacy skills. The professional audience
DATE:
TEAM MEMBERS: Molly Phipps Hennepin County Library
resource evaluation Laboratory Programs
The goal of a two-year SEPA grant, Phase II of a collaboration between Columbia University (CU) and the New York Hall of Science (NYHoS), was to enhance science teaching and learning through the use of portable laboratories and hands-on modules to study biotechnology and microscopy in middle and secondary school classes. Four multi-day workshops were held at the NYHoS to train teachers to use the portable laboratory kits. The primary goals of this evaluation are to assess: 1) the workshops' value for teaching the hands-on kit curriculum, 2) teachers' perception of the portable laboratories'
DATE:
TEAM MEMBERS: Ellen Giusti New York Hall of Science
resource project Public Programs
CENTC's (Center for Enabling New Technologies Through Catalysis) outreach is focused on partnerships with science centers. Initially we worked with the Pacific Science Center (PSC) to train our students in effective communication of science concepts to public audiences. Later we developed a short-term exhibit, Chemist - Catalysts for Change in the Portal to Current Research space. As part of the CCI/AISL partnership program, we partnered with Liberty Science Center to create an activity on a multi-touch media table, "Molecule Magic." We are currently developing another exhibit with PSC.
DATE: -
TEAM MEMBERS: Karen Goldberg Eve Perara
resource project Public Programs
This Pathways Project connects rural, underserved youth and families in Eastern Washington and Northern Idaho to STEM concepts important in sustainable building design. The project is a collaboration of the Palouse Discovery Science Center (Pullman, WA), Washington State University and University of Idaho, working in partnership with rural community organizations and businesses. The deliverables include: 1) interactive exhibit prototype activities, 2) a team cooperative learning problem-solving challenge, and (3) take-home materials to encourage participants to use what they have learned to investigate ways to make their homes more energy-efficient and sustainable. The project introduces youth and families to the traditionally difficult physics concept of thermal energy, particularly as it relates to sustainable building design. Participants explore how building materials and their properties can be used to control all three types of heat transfer: conduction, convection, and radiation. The interactive exhibit prototypes are coupled with an Energy Efficient Engineering Challenge in which participants, working in cooperative learning teams, use information learned from the exhibit prototype activities to retrofit a model house, improving its energy efficiency. The project components are piloted at the Palouse Discovery Science Center, and then travel to three underserved rural/tribal communities in Northern Idaho and Eastern Washington. Front-end and formative evaluation studies will demonstrate whether this model advances participant understanding of and interest in STEM topics and careers. The project will yield information about ways that other ISE practitioners can effectively incorporate cooperative learning strategies in informal settings to improve the transferability of knowledge gained from exhibits to real-world problem-solving challenges, especially for rural and underserved audiences. This project will also provide the ISE field with: 1) a model for increasing the capacity of small, rural science centers to form collaborative regional networks that draw on previously unused resources in their communities and provide more effective outreach to the underrepresented populations they serve, and 2) a model for coupling cooperative learning with outreach exhibits, providing richer experiences of active engagement.
DATE: -
TEAM MEMBERS: Kathleen Ryan Kathy Dawes Christine Berven Anne Kern Patty McNamara
resource project Public Programs
Monarchs in the Classroom provides a wide variety of materials and professional development opportunities for teachers, naturalists and citizens throughout the US. Two groups of behind the scenes people work together in a unique partnership to make this program successful: classroom teachers and scientists committed to sharing their expertise with the broader community. All of our programs reflect this partnership, combining real science with techniques that work for teachers, students and citizens, and promoting practices in which children learn science in ways that reflect the inquiry methods used by scientists to understand the natural world.
DATE:
TEAM MEMBERS: Karen Oberhauser
resource project Public Programs
Kansas teachers participate in workshops at Konza Prairie on prairie ecology and long-term data collection. They choose a native prairie site near their school where students can collect data annually. This real world research experience allows students to use their own data and data collected by other schools and in previous years for comparison in classroom units developed by their teachers. Student collected data is added to our databases on the Internet and is available for use in any classroom. Several activities are offered to fit the class curriculum.
DATE:
TEAM MEMBERS: Konza Prairie Biological Station Valerie Wright
resource project Public Programs
The Exploratorium is developing a model program that demonstrates the vital role science museum exhibits can play in supporting formal science education reform. The development of exhibitions and enhancement activities is based on the Science Framework for California Public Schools and the emerging National Science Education Standards. The project includes: A series of four museum exhibitions (with a total of 60 exhibits) based on the Science Framework themes of Patterns of Change, Stability, Scale and Structure, and Systems and Interactions Publications (Exhibit Guides and Pathways) for each collection A series of workshops and evening events for teachers, families and students A symposium, video and Internet resource for museum and education professionals An important feature is an information desk and resource kiosk to inform teachers, parents and the general public about science education reform efforts. The project aims at 5,000 teachers, 32,000 parents and caregivers, 140,000 students and 1,320,000 members of the general public.
DATE: -
TEAM MEMBERS: Thomas Humphrey Lynn Rankin
resource project Professional Development, Conferences, and Networks
Rhode Island Information Technology Experiences for Students and Teachers (RI-ITEST) is a comprehensive ITEST project for high school students and teachers. The goal of RI-ITEST is to prepare students from diverse backgrounds for careers in information technologies by engaging them in exciting, inquiry-based learning activities that use sophisticated computational models in support of a revolutionary science curriculum. It advances science education by enhancing the Physics First initiative in Rhode Island through the use of NSF funded student materials based on molecular modeling and promotes IT education by teaching modeling skills and providing students with career and vocational information on the use of computational models. The project provides over 120 hours of credit-bearing activities for 100 teachers and full support for classroom implementation. RI-ITEST is developing an optimal placement of the interactive materials from CC's Science of Atoms and Molecules project in the Physics First courses in Rhode Island; developing IT materials that are coordinated with the student materials that emphasize modeling skills and the career and vocational dimensions of computational modeling; preparing100 diverse Rhode Island science teachers in two cohorts to offer a course in the Physics-Chemistry-Biology sequence; developing materials and supports for using molecular dynamics and related IT materials for teachers in Rhode Island and elsewhere who are not ITEST participants; generating evidence for the effectiveness of the IT-enhanced project materials for increasing student learning and changing student attitudes about science, mathematics, and technology careers; reaching parents, guidance counselors, school administrators, and business partners with information about the project, student productions, and evidence for effectiveness; disseminating materials and findings to other teachers, programs, and districts nationwide.
DATE: -
TEAM MEMBERS: Daniel Damelin Gerald Kowaiczyk James Magyar
resource project Professional Development, Conferences, and Networks
The Nanoscale Science and Engineering Education (NSEE) Center for Learning and Teaching (NCLT) would focus on the research and development of nano-science instructional resources for grades 7-16, related professional development opportunities for 7-12 teachers, and programs infused with nano-science content for education doctoral students. The Center would bring together educators and scientists from several areas of nano-science and engineering research to collaborate with science teachers and doctoral candidates in education on both the development of the resources and research on their efficacy. The PI has prior experience as director of the Materials World Modules project, an NSF-funded curriculum currently in use in several secondary schools across the country. Lead partners in the proposed Center are Northwestern University, Purdue University, University of Michigan, University of Illinois at Chicago and University of Illinois at Urbana-Champaign. Additional partners include Argonne National Laboratory, West Point Military Academy, Alabama A & M University, Fisk University, Hampton University, Morehouse College and University of Texas at El Paso. The additional partners will widen the geographic range of the project, expanding opportunities to reach a diverse and currently underrepresented population of graduate students, teachers and ultimately students. STEM and Education faculty and researchers from the partner institutions would participate in interdisciplinary teams to address the Center's mission: Provide national education leadership and resources for advancing NSEE Create and implement professional development programs in NSEE Use innovative ideas in learning to design instructional materials for grades 7-16 Conduct research relating to integration of NSEE into science, technology, engineering and mathematics (STEM) education.
DATE: -
TEAM MEMBERS: R. P. H. Chang Thomas Mason Ncholas Giordano Joseph Krajcik
resource project Exhibitions
This project will engage underserved Native and non-native youth and adults in environmental science content and awareness through innovative exhibitions and hands-on activities. Traditional ecological knowledge (TEK) and western science will be communicated and promoted within culturally relevant contexts as valuable, complementary ways of knowing, understanding, and caring for the world. The Oregon Museum of Science and Industry (OMSI), the lead institution, and its partner organizations, The Indigenous Education Institute (IEI), The National Museum of the American Indian (NMAI), the Tramastklikt Cultural Institute, the Confederated Tribes of the Umatilla Indian Reservation, the Hibub Cultural Center and Natural History Preserve (Tulalip Tribes) will work collaboratively to develop and deliver all aspects of the project. An estimated 1.5 million Native American and non-Native American youth and adults are expected to be engaged in the project\'s exhibits, website, and activity kits over the five year duration of the project. Native American and non-Native American youth (ages 11-14) and their families from the Portland area and visitors to national science centers, tribal museums, and members of Native American organizations and service providers will be targeted for participation in Generations of Knowledge activities. In addition, the Professional Collaborative component will bring professionals from the partnering organizations to share resources, professional opportunities, and document their collaborative process. OMSI, project partners, Native scientists, tribal museum partner, exhibit developers, advisors, and members of various Native American communities will work collaboratively to develop four integrated deliverables. Each deliverable will be interconnected and designed to accommodate a variety of venues and audiences. Project deliverables include: (a) a 2,000 sq ft traveling exhibition, (b) a small traveling graphic panel exhibition, (c) an online virtual exhibition, (d) an activity kit for Native youth in informal and formal settings, and (e) opportunities and resources for reciprocal collaboration between ISE and Native American partners through a professional collaborative initiative. IEI and advisors from RMC Research and Native Pathways will conduct the external evaluation using a mixed method, community-based participatory research (CBPR) approach. Formative and summative evaluative data will be used to monitor, assess, and inform the project and the extent to which project goals have been met and the intended impacts achieved. The anticipated project outcomes include (but not limited to): (a) an awareness and understanding of the interconnectedness of TEK and western science, (b) a recognition of the relevancy and value of TEK and western science for understanding and caring for the natural world, (c) intergenerational learning and discussions about related TEK and western science issues, and (d) an increased capacity, supported by evidence, among the project team and partners to facilitate reciprocal collaborative efforts. This project builds on a long history of successful NSF/DRL supported work led by OMSI and IEI. It also extends existing traditional ecological knowledge focused work through a culturally contextualized hands-on traveling and virtual exhibitions, a rigorous professional development component, highly visible national partners (e.g., NMAI), and a national reach to over one million Native American and non-Native American youth and adults over a five year period. The project\'s research and evaluation findings will add to the knowledge base on strategies that can be employed to communicate and promote TEK and western science as complementary, valuable was of understanding and caring for the natural world.
DATE: -
TEAM MEMBERS: Victoria Coats Lori Erickson Nancy Maryboy David Begay Jill Stein
resource project Professional Development, Conferences, and Networks
The proposed CAREER study uses a comprehensive mixed-methods design to develop measures of motivational beliefs and family supports for Spanish and English speaking Mexican-origin youth in high school physical science. The research examines a three-part model which may provide a deeper understanding of how Mexican families support youth through their general education strategies, beliefs about physical science, and science specific behaviors. This approach incorporates motivation and ecodevelopmental theories while pursuing an innovative line of research that examines how the contributions of older siblings and relatives complement or supplement parental support. The study has four aims which are to (1) to develop reliable, valid measures of Mexican-origin adolescent motivational beliefs and family supports in relation to high school chemistry and physics, (2) to test whether family supports predict motivational beliefs and course enrollment, (3) to test how indicators in Aim 2 vary based on gender, culture, English language skills and relationship quality, and (4) to examine how family supports strengthen or weaken the relationship between school-based interactions (teachers and peer support) and the pursuit of physical science studies. Spanish and English-speaking Mexican-origin youth will participate in focus groups to inform the development of a survey instrument which will be used in a statistical measurement equivalence study of 300 high school students in fulfillment of Aim 1. One hundred and fifty Mexican high school students and their families will participate in a longitudinal study while students progress through grades 9-12 to examine Aims 2- 4. Data to be collected includes information on science coursework, adolescent motivational beliefs, supports by mothers and older youth in the family, and family interactions. All materials will be in English and Spanish. The educational and research integration plan uses a three pronged approach which includes mentoring of doctoral students, teacher outreach, and the evaluation of the ASU Biodesign high school summer internship program using measures resulting from the research. It is anticipated that the study findings will provide research-based solutions to some of the specific behaviors that influence youth motivation in physical sciences. Specifically, the study will identify youth that might be most affected by an intervention and the age of maximum benefit, as well as valid, reliable measures of youths' motivation that can used in interventions to measure outcomes. The study will also identify family behaviors that may be influenced, including education strategies for school preparation, beliefs about physical science, and sciece-specific strategies such as engaging in science activities outside school. The findings will be broadly disseminated to science teachers, scholars, and families of Mexican-origin youth. This multi-tiered approach will advance current scholarship and practice concerning Mexican-origin adolescents' pursuit of physical science.
DATE: -
TEAM MEMBERS: Sandra Simpkins