Skip to main content

Community Repository Search Results

resource research Professional Development, Conferences, and Networks
In our efforts to sustain U.S. productivity and economic strength, underrepresented minorities (URM) (for the purpose of this paper defined as persons of African American, Hispanic American, and Native American racial/ethnic descent), provide an untapped reservoir of talent that could be used to fill technical jobs. Over the past 25 years, educational diversity programs have encouraged and supported URM pursuing STEM degrees. Yet, their representation in STEM still lags far behind that of White, non-Hispanic men. To understand the reasons why this is occurring, the American Association for
DATE:
TEAM MEMBERS: Yolanda S. George Virginia Van Horne Shirley M. Malcom
resource project Professional Development, Conferences, and Networks
Project SYSTEMIC (A Systems Thinking Approach to STEM Ecosystem Development in Chicago) will apply systems thinking to a community-level STEM ecosystem development effort in one of Chicago's largest and most distressed neighborhoods. The project aims to broaden participation of African American and low-income Chicago Public School students (preK-12) in STEM learning opportunities. The proposed model of collaborative change for this project builds on the work of two coordinated collective impact initiatives--the Chicago STEM Pathways Cooperative and Austin Coming Together, a network of local organizations committed to improving educational and economic outcomes for the community. A key feature of this project is that it adds innovative, interactive, visual problem structuring and solving strategies to highlight and uncover the systemic interdependencies that contribute to the BP challenge for African American youth. The project will convene a series of workshops to engage community stakeholders in the mapping of the STEM ecosystem. A broad and representative cross-section of community stakeholders will design and develop evidence-based STEM ecosystem organizing and implementation strategies. Key outcomes anticipated from this project are the development of a shared understanding, agenda, activities, and commitment to collectively address the underlying challenges of STEM access and participation for African American youth. The goal of this community-driven project is to develop a viable system model that elevates neighborhood voices, historically excluded from the problem-solving table and decision-making processes, to leverage existing assets, build local capacity, increase messaging and awareness of the value of STEM, identify needed new programs, and develop coordination/resource sharing mechanisms across partners to support implementation. The evaluation of this project will be grounded in systems thinking and culturally-responsive approaches that seek to understand the diverse perspectives of stakeholders while measuring progress toward project goals. Evaluation data will be used to assess the problem structuring process, to evaluate the organizational strategy designed to address the structured problem, and to support adaptive learning among stakeholders.
DATE: -
TEAM MEMBERS: Natasha Smith-Walker Elizabeth Lehman
resource project Public Programs
By engaging diverse publics in immersive and deliberative learning forums, this three-year project will use NOAA data and expertise to strengthen community resilience and decision-making around a variety of climate and weather-related hazards across the United States. Led by Arizona State University’s Consortium for Science, Policy & Outcomes and the Museum of Science Boston, the project will develop citizen forums hosted by regional science centers to create a new, replicable model for learning and engagement. These forums, to be hosted initially in Boston and Phoenix and then expanded to an additional six sites around the U.S., will facilitate public deliberation on real-world issues of concern to local communities, including rising sea levels, extreme precipitation, heat waves, and drought. The forums will identify and clarify citizen values and perspectives while creating stakeholder networks in support of local resilience measures. The forum materials developed in collaboration with NOAA will foster better understanding of environmental changes and best practices for improving community resiliency, and will create a suite of materials and case studies adaptable for use by science centers, teachers, and students. With regional science centers bringing together the public, scientific experts, and local officials, the project will create resilience-centered partnerships and a framework for learning and engagement that can be replicated nationwide.
DATE: -
TEAM MEMBERS: Dan Sarewitz
resource project Public Programs
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.

The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE: -
TEAM MEMBERS: Steven Stochaj Patricia Sullivan Luis Vazquez
resource project Public Programs
This is a two-year "Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science" (INCLUDES) Design and Development Launch Pilot targeting high school students in the Hudson Valley, including the New York Metropolitan Area. It will support a network of institutional partners that are committed to providing internship and mentoring opportunities to youths interested in authentic research projects. The proposed work will build on a current research immersion program--the Secondary School Field Research Program (SSFRP) at Columbia University's Lamont-Doherty Earth Observatory. SSFRP serves high school students, mainly from underrepresented and underserved communities, who work with college students, science teachers, and researchers around a specific science problem. Over the past decade, the program has had demonstrable impact, including attendance to college, and students' selection of STEM majors. Tracking data indicates that retention rates of its alumni in four-year colleges are well above the norm, and a significant fraction of early participants are now in graduate programs in science or engineering. The program has surpassed all expectations in its effectiveness at engaging underserved populations in science and promoting entry into college, recruitment into STEM majors, and retention through undergraduate and into graduate studies. Hence, the project's overall goal will be to extend and adapt the research-immersive summer internship model through an alliance with peer research institutions, school districts and networks, public land and resource management agencies, private funding agencies, informal educational institutions, and experts in pedagogical modeling, metrics, and evaluation. Focused on earth and environmental sciences, the summer and year-round mentoring model will allow high school students to work in research teams led by college students and teachers under the direction of research scientists. The mentoring model will be multilayered, with peer, near-peer, and researcher-student relationships interweaving throughout the learning process.

The project has formulated a set of testable explanatory hypotheses: (1) Beyond specific subject knowledge, success rests on increased student engagement in a community of practice, with near-peer mentors, teachers, and scientists in the context of scientific research; (2) The intensity of engagement also shifts the students' vision of their future to include higher education, and specifically to imagine and move toward a STEM career; and (3) Early engagement, before students attend college, is critical because high school is where students form patterns of engagement and capacities related to science learning. Thus, the immediate goal of the two-year plan will be to create approximately 11 research internship programs focused on earth and environmental sciences, and to build the networks for growth through engagement with a wider community of educational partners. The main focus of this approach will be removing barriers between high school students and STEM organizations, and adapting the current mentoring model at Columbia University to the specific cultures of other research groups and internship programs throughout the lower Hudson Valley. The team has already assembled a diverse set of partners committed to broadening participation in STEM using a collective impact approach to early engagement in project-based learning. Research partners will provide the mentors, research projects, and laboratory facilities. The educational network partners will provide access for students, particularly those from under-resourced communities to participate, as well as participation opportunities for interested teachers. Informal learning organizations will provide access to field and research sites, along with research dissemination opportunities. In Year 1, the project will conduct a series of development workshops for partners already in place and foster the formation of new partnership clusters according to shared interest, complementary resources and geographic proximity. The workshops will provide a forum for partners to learn about each other's visions, values, challenges, and existing structures, while working through theoretical and practical issues related to STEM engagement for young investigators. In Year 2, the project will target the implementation of the internship programs at various sites according to the agreed-upon goals, program model, research projects, recruitment and retention strategy, staff training, data collection, and evaluation plans. An external evaluator will address both the formative and summative evaluation of the effort directed toward examining the three project's hypotheses concerning the educational impacts of scientific research on student engagement, extent of the immersion, and overall effectiveness of the programs.
DATE: -
TEAM MEMBERS: Robert Newton Luo Cassie Xu Margie Turrin Einat Lev Matthew Palmer
resource research Public Programs
Scientific literacy is an important educational and societal goal. Measuring scientific literacy, however, has been problematic because there is no consensus regarding the meaning of scientific literacy. Most definitions focus on the content and processes of major science disciplines, ignoring social factors and citizens’ needs. The authors developed a definition of scientific literacy for the California 4-H Program from the citizen’s perspective, concentrating on real-world science-related situations. The definition includes four anchor points: science content; scientific reasoning skills
DATE: