We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings.
DATE:
TEAM MEMBERS:
Katie SpellmanDouglas CostChristine Villano
The Arctic Harvest-Public Participation in Scientific Research (which encompasses the Winterberry Citizen Science program), a four-year citizen science project looking at the effect of climate change on berry availability to consumers has made measurable progress advancing our understanding of key performance indicators of highly effective citizen science programs.
DATE:
TEAM MEMBERS:
Angela LarsonKelly KealyMakaela Dickerson
This project builds on an NSF-funded program which engaged youth in the creation of art-science experiences that use the biology and the experiences of migratory birds as a means for communicating the impact of a changing climate.
DATE:
-
TEAM MEMBERS:
Rebecca SafranShawhin RoudbariMary Osnes
This guidebook will help you plan your action project. The initial brainstorm pages will help you consider where to start, and the Action Project Framework will navigate you through steps to get to your destination: the completion of your project!
This project focuses on environmental health literacy and will explore the extent to which diverse rural and urban youth in an out-of-school STEM enrichment program exhibit gains in environmental health literacy while engaged in learning and teaching others about community resilience in the face of changing climates. Science centers and museums provide unique opportunities for youth to learn about resilience, because they bring community members together to examine the ways that current science influences local decisions. In this project, teams of participating youth will progress through four learning modules that explore the impacts of changing climates on local communities, the local vulnerabilities and risks associated with those changes, possible mitigation and adaptation strategies, and building capacities for communities to become climate resilient. After completion of these modules, participating youth will conduct a resilience-focused action project. Participants will be encouraged to engage peers, families, friends, and other community stakeholders in the design and implementation of their projects, and they will gain experience in accessing local climate and weather data, and in sharing their findings through relevant web portals. Participants will also use various sensors and web-based tools to collect their own data.
This study is guided by three research questions: 1) To what extent do youth develop knowledge, skills, and self- efficacy for developing community resilience (taken together, environmental health literacy in the context of resilience) through participation in museum-led, resilience-focused programming? 2) What program features and settings foster these science learning outcomes? And 3) How does environmental health literacy differ among rural and urban youth, and what do any differences imply for project replication? Over a two- year period, the project will proceed in six stages: a) Materials Development during the first year, b) Recruitment and selection of youth participants, c) Summer institute (six days), d) Workshops and field experiences during the school year following the summer institute, e) Locally relevant action projects, and f) End- of-program summit (one day). In pursuing answers to the research questions, a variety of data sources will be used, including transcripts from youth focus groups and educator interviews, brief researcher reflections of each focus group and interview, and a survey of resilience- related knowledge. Quantitative data sources will include a demographic survey and responses to a self-efficacy instrument for adolescents. The project will directly engage 32 youth, together with one parent or guardian per youth. The study will explore the experiences of rural and urban youth of high school age engaged in interactive, parallel programming to enable the project team to compare and contrast changes in environmental health literacy between rural and urban participants. It is anticipated that this research will advance knowledge of how engagement of diverse youth in informal learning environments influences understanding of resilience and development of environmental health literacy, and it will provide insights into the role of partnerships between research universities and informal science centers in focusing on community resilience.
For some rural communities, the outdoor recreation ecosystem is an integral part of the STEM learning ecosystem that connects rural youth with STEM and STEM career pathways. Landowners and forest managers construct and fly drones to inventory, map, and monitor resources. Hatcheries monitor fish levels and sustain populations for recreational fisheries. Backcountry skiers depend on snow science and avalanche forecasts to assess conditions. Outdoor recreation that youth in rural communities are currently engaging in can be sources of opportunities and experiences for cultivating their STEM identities and career aspirations. Existing studies have shown the promise of specific, one-time interventions and discrete activities, none have situated activities in a broader ecosystem framework comprising a nascent and growing economic sector that is currently shaping rural communities.
This Pilot and Feasibility project brings together CAST, a non-profit education research organization, the University of New Hampshire (UNH), and outdoor-recreation and informal STEM community-based youth-serving organizations in New Hampshire (NH). In particular, this study will investigate the contributions of youth's participation in (or aversion of) outdoor recreation on developing high school aged students' STEM identities and considerations of careers in STEM through outdoor recreation. Researchers seek to address three questions: How can outdoor recreation be used as an informal STEM learning context to broaden participation for underrepresented rural youth who face known barriers to the traditional learning experiences necessary for developing positive STEM identities? How can outdoor recreation be used to increase the STEM career pathways for underrepresented rural youth? How do people in different positions in the STEM ecosystem view STEM as part of the future OR economy? In this qualitative dominant research study, investigators will employ experience sampling to involve 30 youth and 10 adults in rural communities in collecting their moments of engaging in outdoor recreation, and photovoice to encourage them to examine and reflect on these moments. Another group of 20 youth and 30 adults from the community will be interviewed to consider how members of the community perceives viability of outdoor recreation as a part of future STEM career pathways.
DATE:
-
TEAM MEMBERS:
Amanda BastoniSam Catherine JohnstonAndrew CoppensJayson Seaman
The Massachusetts Audubon Society will develop, pilot, and implement an evaluation framework for nature-based STEM programming that serves K-12 students visiting its network of nature centers and museums. Working with an external consultant, the society will develop the framework comprised of a logic model and theory of change for fieldtrips, and develop a toolkit of evaluation data collection methodology suitable to various child development stages. The project team will design and conduct three professional development training seminars to help Massachusetts Audubon school educators develop a working understanding of the new evaluation framework for school programs and gain the skills necessary to support protocol implementation. This project will result in the development and adoption of a universal protocol to guide the collection, management, and reporting of education program evaluation data across the 19 nature centers and museums in the Massachusetts Audubon system.
Environmental educators have used guided-inquiry in natural and supportive learning environments for decades, but comparatively little programming and research has focused on experiences in urban environments, including in constructed ecosystems like green roofs, or impacts on older youth and adults. To address this gap, we designed a tiered, near-peer research mentoring program called Project TRUE (Teens Researching Urban Ecology) and used a mixed-methods approach to evaluate impacts on undergraduates serving as research mentors. During the 11-week program, undergraduates conducted
Many youth programs seek to understand their influence over time on participant outcomes. This paper offers a methodology for measuring a participant’s perception of a program’s contribution amid their perception of other youth influences such as those from family, school, peer groups, hobbies, and other organized activities. The instrument built on the large body of work on youth influences in order to capture the dominant factors in development of the item bank. In addition to item development, the paper documents face validity followed by content assessment of items using a research panel
This poster was presented at the 2021 NSF AISL Awardee Meeting.
Dinosaurs of Antarctica is a giant screen film and outreach project that documents the work of NSF-funded researchers on expeditions to Shackleton Glacier during the 2017-2018 field season. This immersive film and companion television special will bring the past to life and engage the public, and particularly students in middle grades (6-9), with polar science through appealing, entertaining media experiences and informal learning programs. The film serves as a companion for the synonymous Antarctic Dinosaurs museum exhibition
Background: Authentic research experiences and mentoring have positive impacts on fostering STEM engagement among youth from backgrounds underrepresented in STEM. Programs applying an experiential learning approach often incorporate one or both of these elements, however, there is little research on how these factors impact youth’s STEM engagement during the high school to college transition. Purpose: Using a longitudinal design, this study explored the impact of a hands-on field research experience and mentoring as unique factors impacting STEM-related outcomes among underrepresented youth