A collaboration of staff from the University of California at Berkeley's Lawrence Hall of Science, School of Education, and the Cooperative Extension Service (4-H) will develop and implement SERIES (Science Experiences and Resources for Informal Education Settings), a state-wide informal science education program for the California State 4-H system. Over a three year period they will adapt existing science curricula and generate new materials for use in informal 4-H settings around the theme of science relevant to societal concerns, with an agricultural technology focus. They will design and test a comprehensive training model using the materials to insure their effective use by volunteer leaders, and develop an extensive cadre of CES staff and volunteer trainers skilled in training volunteer teachers in the use of the curriculum materials. The resulting curriculum and training materials will be published and made available at cost to all 4-H clubs. The project will directly benefit 100 paid and volunteer trainers, 1800 volunteer leaders and 12,600 youth participants, and will indirectly benefit the more than 60,000 youth enrolled in California 4-H programs each year.
DATE:
-
TEAM MEMBERS:
Richard PonzioLaurel DeanHerbert Thier
The middle-school and high-school years are a period of change and crystalization in terms of life goals, disciplinary and course preferences, and social and political attitudes. The literature provides a number of cross-sectional descriptions and models concerning cognitive and attitudinal development during adolescence and young adulthood, but there are no longitudinal data available to study these processes. The proposed longitudinal study will examine the (1) development of interest in science and mathematics, (2) the growth of scientific literacy, (3) the development of attentiveness to science and technology issues, and (4) the attraction to careers in science and engineering among two national cohorts of adolescents and young adults. One cohort will begin with a national sample of 3,000 seventh graders and follow them through the 10th grade. The second cohort will begin with a national sample of 3,000 10th graders and follow them for the next four years through the first full year after high school. Data will be collected from students, teachers, counselors, principals, and parents. A purposive sample of two or three school districts with exemplary elementary school science and mathematics education programs will be selected and comparable data will be collected in these districts. The analysis will consist of a series of expanding multivariate developmental models that will seek to understand cognitive and attitudinal growth and change in the context of family, school, and peer influences. Each wave of data collection will provide an opportunity to examine cognitive and attitudinal change measures in an increasingly rich context of previous measures. Periodic reports will be issued with each cycle of data collection and the data will be made available to other scholars on a timely basis. The first phase of the project, being funded at this time, provides approximately 15 months for instrument development and pilot testing, for sample selection, for monitor selection and training, and for working with the research advisory committee.
The Franklin Institute Science Museum, a major American Science Center serving more than 700,000 individuals annually, proposes to create a 3,700 square foot permanent exhibition that will promote public interest in and understanding of the concepts and principles of mathematics in concrete, tangible form. The exhibition will consist of five clusters of hands-on devices, interactive computer programs, models, and text on the themes of Geometry; Symmetry; Chance, Probability and Randomness; Series, Sequences and Limits; and "Modern Math"--Fractals, Knots and Braids and Topology. Museum staff will utilize several mathematicians as advisors and design participants and will develop adjunct educational materials for use by teachers, students, and family members. They will disseminate exhibition techniques and content by providing six collaborating museums with selected copies of exhibit devices and hardware for their use in developing temporary or permanent mathematics exhibits. Staff of the six museums will join advisors for a design conference during exhibition planning, and will provide evaluation reports on their use of the exhibit materials. Knowledge of mathematics is not only necessary for everyday life; it is central to public understanding of science and engineering, and a key to continued participation in science and engineering, and a key to continued participation in science education in high school and college. Increasing national interest improvement in the mathematical ability of americans at all levels, pre-college and college, make this proposed exhibition particularly timely.
The investigation of naive conceptions of science has many implications for both teaching and learning. The predominant model for past investigations has been with school children or within very formal settings. Extending investigations of misconceptions to informal settings is the challenge of this research. Museum visitors' misconceptions about two topics, gravity and mechanical advantage, will be recorded through a variety of interview formats. Twenty-five persons from each of the age ranges 9-11, 12-14, 15-18, and college students/adults will be interviewed. Information from the interview will be used to modify the current exhibit or to build new prototypes. The research will determine if a modification can be made that results in individuals moving from their previous misconceptions toward a correct conceptualization of the concepts. This research will document what individuals actually learn from museum exhibits and how "front end evaluation" can be used to redesign exhibits for maximum concept learning. The proposed research is challenging and has the potential of adding significant information to science education research on misconceptions. The principal investigator is highly respected in the field of museum education and the associated staff and consultants are the top scholars in their respective fields.
The Field Museum of Natural History in Chicago, with partial support from NSF, will develop science, mathematics, and technology components for a new, permanent 17,000 square foot exhibition on the Pacific. Broad in scope and dramatic in its impact, this exhibition will cut across many fields and disciplines in presenting a coherent, integrated view of the Pacific regions. Topics from anthropology, geology, biology and geography will be combined using collections, reconstructed objects, large scale models, and interactive components in this landmark exhibition. The project will make extensive use of leading researchers, educators, and an evaluation consultant, and will utilize a variety of prototyping and formative exhibit development techniques. The science, mathematics and technology portion will cost $ 1.9 million, of which approximately one third is requested from NSF. The complete 17,000 square foot exhibition will cost $ 3.3 million and will be seen by at least 10 million adults and children over its 20 year life.