Skip to main content

Community Repository Search Results

resource project Public Programs
The Math, Engineering, Science Achievement (MESA) outreach programs are partnerships between K-12 schools and higher education in eight states that for over forty years introduce science, mathematics and engineering to K-12 students traditionally underrepresented in the discipline. This exploratory study examines the influences that those MESA activities have on students' perception of engineering and their self-efficacy and interest in engineering and their subsequent decisions to pursue careers in engineering. The MESA activities to be studied include field trips, guest lecturers, design competitions, hands-on activities and student career and academic advisement.

About 1200 students selected from 40 MESA sites in California, Maryland and Utah are surveyed with instruments that build on those used in prior studies. Focus groups with a randomly selected subset of the students provide follow-up and probe the influence of the most promising activities. In the first year of the project the instruments, based on existing instruments, are developed and piloted. Data are taken in the second year and analyzed in the third year. A separate evaluation determines that the protocols are reasonable and are being followed.

The results are applicable to a number of organizations with similar aims and provide information for increasing the number of engineers from underrepresented populations. The project also investigates the correlation between student engagement in MESA and academic performance. This project provides insights on activities used in informal settings that can be employed in the classroom practice and instructional materials to further engage students, especially student from underrepresented groups, in the study of STEM.
DATE: -
TEAM MEMBERS: Christine Hailey Cameron Denson Chandra Austin
resource project Museum and Science Center Programs
The American Museum of Natural History (AMNH), in collaboration with New York University's Institute for Education and Social Policy and the University of Southern Maine Center for Evaluation and Policy, will develop and evaluate a new teacher education program model to prepare science teachers through a partnership between a world class science museum and high need schools in metropolitan New York City (NYC). This innovative pilot residency model was approved by the New York State (NYS) Board of Regents as part of the state’s Race To The Top award. The program will prepare a total of 50 candidates in two cohorts (2012 and 2013) to earn a Board of Regents-awarded Masters of Arts in Teaching (MAT) degree with a specialization in Earth Science for grades 7-12. The program focuses on Earth Science both because it is one of the greatest areas of science teacher shortages in urban areas and because AMNH has the ability to leverage the required scientific and educational resources in Earth Science and allied disciplines, including paleontology and astrophysics.

The proposed 15-month, 36-credit residency program is followed by two additional years of mentoring for new teachers. In addition to a full academic year of residency in high-needs public schools, teacher candidates will undertake two AMNH-based clinical summer residencies; a Museum Teaching Residency prior to entering their host schools, and a Museum Science Residency prior to entering the teaching profession. All courses will be taught by teams of doctoral-level educators and scientists.

The project’s research and evaluation components will examine the factors and outcomes of a program offered through a science museum working with the formal teacher preparation system in high need schools. Formative and summative evaluations will document all aspects of the program. In light of the NYS requirement that the pilot program be implemented in high-need, low-performing schools, this project has the potential to engage, motivate and improve the Earth Science achievement and interest in STEM careers of thousands of students from traditionally underrepresented populations including English language learners, special education students, and racial minority groups. In addition, this project will gather meaningful data on the role science museums can play in preparing well-qualified Earth Science teachers. The research component will examine the impact of this new teacher preparation model on student achievement in metropolitan NYC schools. More specifically, this project asks, "How do Earth Science students taught by first year AMNH MAT Earth Science teachers perform academically in comparison with students taught by first year Earth Science teachers not prepared in the AMNH program?.”
DATE: -
TEAM MEMBERS: Maritza Macdonald Meryle Weinstein Rosamond Kinzler Mordecai-Mark Mac Low Edmond Mathez David Silvernail
resource project Public Programs
In the project entitled "The GLOBE Program 2010: Collaborative Environmental Research at Local to Global Scales," the University Corporation for Atmospheric Research (UCAR) will improve the functionality of the GLOBE Program by providing: (1) new methods, tools, and services to enhance GLOBE Partner and teacher abilities to facilitate inquiry-based learning and student research, (2) initial pilot testing and assessment of student and teacher learning activities and events related to Climate Science research, (3) improvements in GLOBE's technology infrastructure and data systems (e.g. database, social networking, information management) to support collaborations between students, scientists, and teachers, and (4) development of a robust evaluation plan. In addition, the UCAR will continue to provide support to the worldwide GLOBE community, as well as program management and timely communication with program sponsors.
DATE: -
TEAM MEMBERS: Valerie Williams
resource research Public Programs
A survey we carried out in upper secondary schools showed that the majority of the students consider physics as an important resource, yet as essentially connected to technology in strict terms, and not contributing “culture”, being too difficult a subject. Its appreciation tends to fade as their education progresses through the grades. The search for physics communication methods to increase interest and motivation among students prompted the Department of Physics at the University of Milan to establish the Laboratory of ScienzATeatro (SAT) in 2004. Up to May 2010, SAT staged three shows and
DATE:
TEAM MEMBERS: Marina Carpineti Michela Cavinato Marco Giliberti Nicola Ludwig Laura Perini
resource project Media and Technology
The Virginia Institute of Marine Science (VIMS) and The Watermen's Museum, Yorktown, VA, will produce an underwater robotics research and discovery education program in conjunction with time-sensitive, underwater archeological research exploring recently discovered shipwrecks of General Cornwallis's lost fleet in the York River. The urgency of the scientific research is based upon the dynamic environment of the York River with its strong tidal currents, low visibility, and seasonal hypoxia that can rapidly deteriorate the ships, which have been underwater since 1781. Geophysical experts believe that further erosion is likely once the wrecks are exposed. Given the unknown deterioration rate of the shipwrecks coupled with the constraints of implementing the project during the 2011-2012 school-year, any delays would put the scientific research back at least 18 months - a potentially devastating delay for documenting the ships. The monitoring and studying of the historic ships will be conducted by elementary through high school-aged participants and their teachers who will collect the data underwater through robotic missions using VideoRay Remotely Operated Vehicles (ROVs) and a Fetch Automated Underwater Vehicle (AUV) from a command station at The Watermen's Museum. Students and teachers will be introduced to the science, mathematics, and integrated technologies associated with robotic underwater research and will experience events that occur on a real expedition, including mission planning, execution, monitoring, and data analysis. Robotic missions will be conducted within the unique, underwater setting of the historical shipwrecks. Such research experiences and professional development are intended to serve as a key to stimulating student interest in underwater archeological research, the marine environment and ocean science, advanced research using new technologies, and the array of opportunities presented for scientific and creative problem solving associated with underwater research. A comprehensive, outcomes-based formative and summative, external evaluation of the project will be conducted by Dr. L. Art Safer, Loyola University. The evaluation will inform the project's implementation efforts and investigate the project's impact. The newly formed partnership between the Waterman's Museum and VIMS will expand the ISE Program's objectives to forge new partnerships among informal venues, and to expand the use of advanced technologies for informal STEM learning. Extensive public dissemination during and after the project duration, includes but is not limited to, hosting an "Expedition to the Wrecks" web portal on the VIMS BRIDGE site for K-12 educators providing real-time results of the project and live webcasts. The website will be linked to the education portal at the Association for Unmanned Vehicle Systems International, the world's largest organization devoted to promoting unmanned systems and to the FIRST Robotics community through the Virginia portal. The website will be promoted through scientific societies, the National Marine Educators Association, National Science Teachers Association, and ASTC. Links will be provided to the Center for Archeological Research at the College of William and Mary and the Immersion Presents web portal--consultants to Dr. Bob Ballard's K-12 projects and JASON explorations. The NPS Colonial National Historic Park and the Riverwalk Landing will create public exhibits about the shipwreck's archeological and scientific significance, and will provide live observation of the research and the exploration technologies employed in this effort.
DATE: -
TEAM MEMBERS: Mark Patterson
resource project Media and Technology
This CRPA project will develop a game for mobile devices called the "RapidGuppy". It provides users (students 12-21 years of age) with an interesting and fun way to learn details about biological adaptation and genetic change. The game teaches users about the environmental factors that lead to adaptation. More than 30 years of research on the Trinidadian Guppy that "rapidly" evolves (over 3-5 years) is the basis for the game. The research, databases, and mini-documentaries that support the "RapidGuppy" game are linked to allow users to easily delve deeper into these materials. An extensive social media campaign will be used to market the game and the public facing website. Partners in this endeavor include: University of California-Riverside, Habitat Seven, Magmic Inc., and Edu, Inc. In this project, the mobile device game will be backed by a sophisticated website that contains detailed research results from the field and mini-documentaries showing real fish and the actual research processes as well as researchers and scientists to promote role model development. Interested individuals may also directly access the videos and research results via the website. The target audiences are youth who are prone to play electronic games and the general public. The comprehensive evaluation plan will assess the learning outcomes resulting from the mini-documentaries, in-game content, and website, as well as the playability of the game and website functionality. Impacts resulting from the social media campaign and outreach to underserved audiences will also be measured. Because of the major social media campaign, this project may increase the level of interest in the science of evolution and genetic change, and raise awareness of STEM careers. If the user groups become excited about the game and the inherent messages, it is anticipated that the public will gain a better understanding of the factors responsible for genetic change.
DATE: -
TEAM MEMBERS: David Reznick
resource project Media and Technology
Researchers at the American Association of Variable Star Observers, the Living Laboratory at the Boston Museum of Science, and the Adler Planetarium are studying stereoscopic (three-dimensional or 3D) visualizations so that this emerging viewing technology has an empirical basis upon which educators can build more effective informal learning experiences that promote learning and interest in science by the public. The project's research questions are: How do viewers perceive 3D visualizations compared to 2D visualizations? What do viewers learn about highly spatial scientific concepts embedded in 3D compared to 2D visualizations? How are viewers\' perceptions and learning associated with individual characteristics such as age, gender, and spatial cognition ability? Project personnel are conducting randomized, experimental mixed-methods research studies on 400 children and 1,000 adults in museum settings to compare their cognitive processing and learning after viewing two-dimensional and three-dimensional static and dynamic images of astronomical objects such as colliding galaxies. An independent evaluator is (1) collecting data on museum workers' and visitors' perceived value of 3D viewing technology within museums and planetariums and (2) establishing a preliminary collection of best practices for using 3D viewing technology based on input from museum staff and visitors, and technology creators. Spatial thinking is important for learning many domains of science. The findings produced by the Two Eyes, 3D project will researchers' understanding about the advantages and disadvantages of using stereoscopic technology to promote learning of highly spatial science concepts. The findings will help educators teach science in stereoscopic ways that mitigate problems associated with using traditional 2D materials for teaching spatial concepts and processes in a variety of educational settings and science content areas, including astronomy.
DATE: -
TEAM MEMBERS: Aaron Price Arne Henden Mark SubbaRao Jennifer Borland Becki Kipling
resource project Public Programs
The National Science Festival Network project, also operating as the Science Festival Alliance, is designed to create a sustainable national network of science festivals that engages all facets of the general public in science learning. Science Festivals, clearly distinct from "science fairs", are community-wide activities engaging professional scientists and informal and K-12 educators targeting underrepresented segments of local communities historically underserved by formal or informal STEM educational activities. The initiative builds on previous work in other parts of the world (e.g. Europe, Australasia) and on recent efforts in the U.S. to create science festivals. The target audiences are families, children and youth ages 5-18, adults, professional scientists and educators in K-12 and informal science institutions, and underserved and underrepresented communities. Project partners include the MIT Museum in Cambridge, UC San Diego, UC San Francisco, and the Franklin Institute in Philadelphia. The deliverables include annual science festivals in these four cities supported by year-round related activities for K-12 and informal audiences, a partnership network, a web portal, and two national conferences. Ten science festivals will be convened in total over the 3 years of the project, each reaching 15,000 to 60,000 participants per year. STEM content includes earth and space science, oceanography, biological/biomedical science, bioinformatics, and computer, behavioral, aeronautical, nanotechnology, environmental, and nuclear science. An independent evaluator will systematically assess audience participation and perceptions, level/types of science interest stimulated in target groups, growth of partnering support at individual sites, and increasing interactions between ISE and formal K-12 education. A variety of qualitative and quantitative assessments will be designed and utilized. The project has the potential to transform public communication and understanding of science and increase the numbers of youth interested in pursuing science.
DATE: -
TEAM MEMBERS: Loren Thompson Jeremy Babendure Ben Wiehe
resource project Media and Technology
Investigators from the MIT Media Lab will develop and study a new generation of the Scratch programming platform, designed to help young people learn to think creatively, reason systematically, and work collaboratively -- essential skills for success in the 21st century. With Scratch, young people (ages 8 and up) can program their own interactive stories, games, animations, and simulations, then share their creations with others online. Young people around the world have already shared more than 1 million projects on the Scratch community website (http://scratch.mit.edu). The new generation, called Scratch 2.0, will be fully integrated into the Internet, so that young people can more seamlessly share and collaborate on projects, access online data, and program interactions with social media. The research is divided into two strands: (1) Technological infrastructure for creative collaboration. With Scratch 2.0, people will be able to design and program new types of web-based interactions and services. For example, they will be able to program interactions with social-media websites (such as Facebook), create visualizations with online data, and program their own collaborative applications. (2) Design experiments for creative collaboration. As the team develops Scratch 2.0, they will run online experiments to study how their design decisions influence the ways in which people collaborate on creative projects, as well as their attitudes towards collaboration. This work builds on a previous NSF grant (ITR-0325828) that supported the development of Scratch. Since its public launch in 2007, Scratch has become a vibrant online community, in which young people program and share interactive stories, games, animations, and simulations - and, in the process, learn important computational concepts and strategies for designing, problem solving, and collaborating. Each day, members of the Scratch community upload nearly 1500 new Scratch projects to the website - on average, a new project almost every minute. In developing Scratch 2.0, the team will focus on two questions from the NSF Program Solicitation: (1) Will the research lead to the development of new technologies to support human creativity? (2) Will the research lead to innovative educational approaches in computer science, science, or engineering that reward creativity? Intellectual Merit: The intellectual merit of the project is based on its study of how new technologies can foster creativity and collaboration. The investigators will conduct design experiments to examine how new features of Scratch 2.0 engage young people in new forms of creative expression, collaboration, learning, and metadesign. Young people are already interacting with many cloud-based services (such as YouTube and Facebook). But Scratch 2.0 is fundamentally different in that it aims to engage people in programming their own projects and activities in the cloud. With Scratch 2.0, young people won?t just interact with the cloud, they will create in the cloud. The goal is to democratize the development of cloud-based activities, so that everyone can become an active contributor to the cloud, not just a consumer of cloud-based services. This development and study of Scratch 2.0 will lead to new insights into strategies for engaging young people in activities that cultivate collaboration and creativity. Broader Impacts: The broader impact of the project is based on its ability to broaden participation in programming and computer science. The current version of Scratch has already helped attract a broader diversity of students to computer science compared to other programming platforms. The investigators expect that the collaboration and social-media features of Scratch 2.0 will resonate with the interests of today's youth and further broaden participation. Integration of Scratch into the introductory computer science course at Harvard led to a sharp reduction in the number of students dropping the course, and an increase in the retention of female students. There have been similar results in pre-college courses. The National Center for Women & Information Technology (NCWIT) calls Scratch a ?promising practice? for increasing gender diversity in IT.
DATE: -
TEAM MEMBERS: Mitchel Resnick Natalie Rusk John Maloney
resource evaluation Exhibitions
In 2008, COSI received funding from the Institute of Museum and Library Services to develop the exhibit Labs in Life (LG-26-08-0146). The development of the Labs in Life embodies a unique model for collaboration, with active researchers interested in research outcomes while simultaneously serving as models for the public, and science center staff concurrently gleaning new and changing content for exhibits and programs. While each partner is motivated by many different goals, all agree that they are interested in stimulating public interest in and understanding of science and technology
DATE:
TEAM MEMBERS: Institute for Learning Innovation Joe E Heimlich
resource research Media and Technology
Youth participants in an informal after school science program created a multimodal digital video public service announcement video. This paper considers the counterstories that emerge within the video and during the making of the video that challenge existing definitions of science literacy. The investigation suggests youth engage in expansive learning where vertical knowledge and horizontal knowledge inform their actions toward community based energy issues. Vertical knowledge describes the scientific knowledge youth engage while horizontal knowledge refers to the locally situated knowledge
DATE:
TEAM MEMBERS: Takumi Sato Angela Calabrese Barton
resource research Media and Technology
In recent years, many technological interventions have surfaced, such as virtual worlds, games, and digital labs, that aspire to link young people's interest in media technology and social networks to learning about science, technology, engineering, and math (STEM) areas. Despite the tremendous interest surrounding young people and STEM education, the role of school libraries in these initiatives is rarely examined. In this article, we outline a sociocultural approach to explore how school library programs can play a critical role in STEM education and articulate the need for research that
DATE:
TEAM MEMBERS: Mega Subramaniam June Ahn Kenneth Fleischmann Allison Druin