Skip to main content

Community Repository Search Results

resource project Media and Technology
The Space and Earth Informal STEM Education (SEISE) project, led by the Arizona State University with partners Science Museum of Minnesota, Museum of Science, Boston, and the University of California Berkeley’s Lawrence Hall of Science and Space Sciences Laboratory, is raising the capacity of museums and informal science educators to engage the public in Heliophysics, Earth Science, Planetary Science, and Astrophysics, and their social dimensions through the National Informal STEM Education Network (NISE Net). SEISE will also partner on a network-to-network basis with other existing coalitions and professional associations dedicated to informal and lifelong STEM learning, including the Afterschool Alliance, National Girls Collaborative Project, NASA Museum Alliance, STAR_Net, and members of the Association of Children’s Museums and Association of Science-Technology Centers. The goals for this project include engaging multiple and diverse public audiences in STEM, improving the knowledge and skills of informal educators, and encouraging local partnerships.

In collaboration with the NASA Science Mission Directorate (SMD), SEISE is leveraging NASA subject matter experts (SMEs), SMD assets and data, and existing educational products and online portals to create compelling learning experiences that will be widely use to share the story, science, and adventure of NASA’s scientific explorations of planet Earth, our solar system, and the universe beyond. Collaborative goals include enabling STEM education, improving U.S. scientific literacy, advancing national educational goals, and leveraging science activities through partnerships. Efforts will focus on providing opportunities for learners explore and build skills in the core science and engineering content, skills, and processes related to Earth and space sciences. SEISE is creating hands-on activity toolkits (250-350 toolkits per year over four years), small footprint exhibitions (50 identical copies), and professional development opportunities (including online workshops).

Evaluation for the project will include front-end and formative data to inform the development of products and help with project decision gates, as well as summative data that will allow stakeholders to understand the project’s reach and outcomes.
DATE: -
resource research Public Programs
Out-of-school settings promise to broaden participation in science to groups that are often left out of school-based opportunities. Increasing such involvement is premised on the notion that science is intricately tied to “the social, material, and personal well-being” of individuals, groups, and nations—indicators and aspirations that are deeply linked with understandings of equity, justice, and democracy. In this essay, the authors argue that dehistoricized and depoliticized meanings of equity, and the accompanying assumptions and goals of equity-oriented research and practice, threaten to
DATE:
TEAM MEMBERS: Thomas M. Philip Flávio S. Azevedo
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.

The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE: -
TEAM MEMBERS: Aristides Marcano Mohammed Khan Gulnihal Ozbay Gabriel Gwanmesia
resource project Summer and Extended Camps
This NSF INCLUDES Design and Development Launch Pilot is to expand the Navajo Nation Math Circle model to other sites, and to develop and launch a network of math circles based on the NNMC model. The Navajo Nation Math Circle model is a novel approach to broadening the participation of indigenous peoples in mathematics that, ultimately, seeks to improve American Indian students' attitudes towards mathematics, persistence with challenging problems, and grades in math courses. Navajo Nation Math Circles bring teachers, students, and mathematicians together to work collaboratively on challenging, but meaningful and fun, math problems. Through this NSF INCLUDES project, additional math circles across the Navajo Nation will be launched and a mirror site in Washington State serving additional tribes (such as Puyallup, Muckleshoot, Tulalip, and Stillaguamish) will be established.

Originating approximately a century ago in Eastern Europe as a means to engage students in mathematical thinking, math circles bring teachers, students, and math professionals together to work collaboratively on challenging, but relevant and interesting, math problems. Navajo Nation Math Circles, established math circles in various Navajo Nation communities, are the foundation of this INCLUDES project. One goal of this effort is to launch a network with the capacity to support the replication and adaption of math circles in multiple sites as an innovative strategy for encouraging indigenous math engagement through culturally enriched open-ended group math explorations. In addition, the Navajo Nation Math Circle model will be expanded to new math circles in the Navajo Nation, as well as in Washington State to serve additional tribes. Cells in the network will implement key elements of the Navajo Nation Math Circle model, adapting them to their particular contexts. Such elements include facilitation of open-ended group math explorations, incorporating indigenous knowledge systems; a Mathematical Visitor Program sending mathematicians to schools to work with students and their teachers; inclusion of mathematics in public festivals to increase community mathematical awareness; a two-week summer math camp for students; and teacher development opportunities ranging from workshops to immersion experiences to a mentoring program pairing teachers with mathematicians.
DATE: -
TEAM MEMBERS: David Auckly Henry Fowler Jayadev Athreya
resource project Public Programs
The University of Guam (UOG) NSF INCLUDES Launch Pilot project, GROWING STEM, addresses the grand challenge of increasing Native Pacific Islander representation in the nation's STEM enterprise, particularly in environmental sciences. The project addresses culturally-relevant and place-based research as the framework to attract, engage, and retain Native Pacific Islander students in STEM disciplines. The full science, technology, engineering and mathematics (STEM) pathway will be addressed from K-12 to graduate studies with partnerships that include the Guam Department of Education, Humatak Community Foundation, Pacific Post-Secondary Education Council, the Guam Science and Discovery Society, the Society for the Advancement of Chicanos/Hispanics and Native Americans in Science (SACNAS) and the University of Alaska-Fairbaanks. As the project progresses, the project anticipates further partnerships with the current NSF INCLUDES Launch Pilot project at the University of the Virgin Islands.

Pilot activities include summer internships for high school students, undergraduate and graduate research opportunities through UOG's Plant Nursery and the Humatak Community Foundation Heritage House. STEM professional development activities will be offered through conference participation and student research presentations in venues such as the Guam Science and Discovery Society's Guam Island-wide Science Fair and SACNAS. Faculty will be recruited to develop a mentoring protocol for the project participants. Community outreach and extension services will expand public understanding in environmental sciences from the GROW STEM project. Project metrics will include monitoring the diversity of partners, increases in community engagement, Native Pacific Islander participation in STEM activities, the number of students who desire to attain terminal STEM degrees and the number of community members reached by pilot STEM extension and outreach activities. Dissemination of the GROWING STEM pilot project results will occur through the NSF INCLUDES National Network, partner annual conferences, and local, regional and national STEM conferences.
DATE: -
TEAM MEMBERS: John Peterson Cheryl Sangueza Else Demeulenaere Austin Shelton
resource project Public Programs
This project is a Design and Development Launch Pilot (DDLP) of the NSF INCLUDES program. The goal of the project is to enhance the knowledge and applicability of science, technology, engineering, and mathematics (STEM) for a broad cross-section of people living in the U.S,-Affiliated Pacific Islands. The focus will be on water resources, which is an extremely important topic for this region and equally relevant nationally. The project will engage local community groups and schools in water monitoring, sampling, and analysis, in order to promote the benefits of science education and careers among a population that is underrepresented in these areas. Moreover, the project will improve the capabilities of the island residents for making decisions about sustainable use and protection of these scarce resources. A functioning network will be established among the islands that will have a positive impact on the health and well-being of the residents.

This project will use water as a highly relevant topic in order to involve a wide range of individuals in both general STEM learning and the basic scientific principles as applied to water resources. Specific aspects include engaging K-12, higher education, informal educators and community members to manage water resources in a sustainable fashion that will reduce disaster risk. In addition, the project will empower local communities through water literacy to make better informed, evidence-based decisions that balance the needs of diverse stakeholder groups. The overarching goal is to further advance the inclusion of underrepresented learners in STEM fields. Benefits to society will accrue by: increasing STEM learning opportunities for ~6,500 students from underserved and underrepresented Indigenous Pacific Islanders that will enhance their eligibility for STEM careers; building community resiliency through a collective impact network to resolve emerging water crises; and fostering collaboration among different constituencies in remote communities to make better-informed decisions that reflect the needs and constraints of diverse interests.
DATE: -
TEAM MEMBERS: Ming Wei Koh Ethan Allen
resource project Media and Technology
Worldwide, four million people participate in geocaching--a game of discovering hidden treasures with GPS-enabled devices (including smart phones). Geocachers span all ages and tend to be interested in technology and the outdoors. To share information about the Montana Climate Assessment (MCA), an NSF-funded scientific report, Montana State University created a custom trackable geocaching coin featuring the MCA Website and logo. We then recruited volunteers to hide one coin in each of Montana’s 56 counties. Volunteer geocachers enthusiastically adopted all 56 counties, wrote blogs and social media posts about the coins, and engaged local Scout troops and schools. Other geocachers then found and circulated the coins while learning about Montana’s climate. One coin has traveled nearly 4,000 miles; several have visited other states and Canada. 95% of the volunteers said the project made them feel more connected to university research, and they told an average of seven other people about the project. Nearly all of the participants were unfamiliar with the Montana Climate Assessment prior to participating. The geocaching educational outreach project included several partnerships, including with Geocaching Headquarters in Seattle (a.k.a. “Groundspeak”); Cache Advance, Inc., an environmentally friendly outdoor gear company; and Gallatin Valley Geocachers. An advisory board of geocachers helped launch the project.
DATE:
TEAM MEMBERS: Suzi Taylor Ray Callaway M.J. Nehasil Cathy Whitlock
resource research Media and Technology
Charles Darwin is largely unknown and poorly understood as a historical figure. Similarly, the fundamental principles of evolution are often miss-stated, misunderstood, or entirely rejected by large numbers of Americans. Simply trying to communicate more facts about Darwin, or facts supporting the principles of evolution is inadequate; neither students nor members of the public will care or retain the information. On the contrary, building facts into a one-on-one conversational narrative creates an memorable opportunity to learn. Here, we create a digital-media, self-guided question and answer
DATE:
TEAM MEMBERS: David J. Lampe Brinley Kantorski John Pollock
resource evaluation Public Programs
Designing Our World (DOW) was a four-year NSF-funded initiative in which the Oregon Museum of Science and Industry (OMSI) sought to promote girls’ pursuit of engineering careers through community-based programming, exhibition development, and identity research. The overarching aim of DOW was to engage girls ages 9–14 with experiences that illuminate the social, personally relevant, and altruistic nature of engineering. In addition to programming for girls, the project also included workshops for parents/caregivers, professional development for staff from community partners; and an exhibition
DATE:
TEAM MEMBERS: Cecilia Garibay
resource evaluation Media and Technology
In March of 2016, the Exploratorium transmitted a live webcast of a total solar eclipse from Woleai, a remote island in the southwestern Pacific. The webcast reached over 1 million viewers. Evaluation reveals effective use of digital media to engage learners in solar science and related STEM content. Edu, Inc. conducted an external evaluation study that shows clear and consistent evidence of broad distribution of STEM content through multiple online channels, social media, pre-produced videos, and an app for mobile devices. IBM Watson did a deep analysis of tweets on eclipse topics that
DATE:
TEAM MEMBERS: Douglas Spencer Sasha Minsky Jediah Graham
resource project Public Programs
One way to encourage youth to pursue training in the STEM fields and enter the STEM workforce is to foster interest and engagement in STEM during adolescence. Informal STEM Learning Sites (ISLS) provide opportunities for building interest and engagement in the STEM fields through a multitude of avenues, including the programming that they provide for youth, particularly teens. Frequently, ISLS provide opportunities to participate in volunteer programs, internships or work, which allow teens both to learn relevant STEM knowledge as well as to share that knowledge with others through opportunities to serve as youth educators. While youth educator programs provide rich contexts for teens to engage as both learners and teachers in these informal STEM environments, research to date has not yet identified the relationship between serving as youth educators and STEM engagement. Thus, the goal of this project is to document the impact of youth educators on visitor learning in ISLS and to identify best practices for implementing youth educator programs. The project studies STEM interests and engagement in the youth participants and the visitors that they interact with at six different ISLS in the US and UK. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.

This project examines youth educator experiences related to STEM identity, educational aspirations, and motivation. The project also identifies outcomes that the youth educators have on visitors to ISLS in terms of knowledge, interest, and engagement in STEM. The specific aims are: 1) Outcomes for Teens - To measure the longitudinal impact of participation in an extended youth educator experience in an ISLS; 2) Outcomes for Visitors - To compare visitor engagement with and learning from exhibits in ISLS when they interact with a youth educator, relative to outcomes of interacting with an adult educator or no educator; and 3) Outcomes Across Demographics and STEM Sites - To examine differences in visitor engagement based on participant characteristics such as socio-economic status (SES), age, gender, and ethnicity and to compare outcomes of youth educator experiences across different types of ISLS. This research, which draws on expectancy value theory and social cognitive theory, will follow youth participants longitudinally over the course of 5 years and use latent variable analyses to understand the impact on the youth educators as well as the visitors with whom they interact. Importantly, the results of this research will be used to develop best practices for implementing youth educator programs in ISLS and the results will be disseminated to both academic and practice-based communities.

This project has clear and measurable broader impacts in a variety of ways. First, the project provides guidance to improve programming for youth in ISLS, including both the sites involved directly in the research and to the larger community of ISLS through evaluation, development, and dissemination of best practices. Additionally, this project provides rigorous, research-based evidence to identify and describe the outcomes of youth educator programs. This study directly benefits the participants of the research, both the visiting public and the youth educators, through opportunities to engage with science. The findings speak to issues of access and inclusivity in ISLS, providing insight into how to design environments that are welcoming and accessible for diverse groups of learners. Finally, this project provides evidence for best practices for ISLS in developing programs for youth that will lead to interest in and pursuit of STEM careers by members of underrepresented groups.
DATE: -
TEAM MEMBERS: Adam Hartstone-Rose Matthew Irvin Kelly Lynn Mulvey Elizabeth Clemens Lauren Shenfeld
resource project Professional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The subject of physics and all of its sub-disciplines are becoming more prevalent in the public press as the research results appear to be quite interesting and important. While the physics discipline has made a Nation-wide effort to acquaint the public with physics knowledge through informal education learning experiences for years, it has not been as successful as the community desires. Thus, this project is aimed to gather all of the informal and outreach physics education efforts that have been attempted in the hope of finding the best practices for learning physics concepts and practices. A compendium will be published to inform future opportunities on how to educate the public through informal and outreach mechanisms. This project is a collaboration between Michigan State University and the University of Colorado. The physics community has a long history of engaging audiences in informal education activities. Physics institutions that facilitate informal programs include university departments, national laboratories and centers, and professional societies and organizations. There is, however, no systemic understanding of how these programs are facilitated, nor an assessment of the collective impact that these programs have on participants. This project will address numerous research questions in the broad areas of Activity Detail, Structural Aspects, and Assessment. Further, their efforts will determine the "who, what, why, where and how" of informal physics offerings, focusing on their facilitation, impact on participants, and the academic and discipline-specific cultures from which these programs originate. The study has several definite research outcomes that will emerge from this methodology: 1) They will produce a survey of the informal efforts of university physics departments, national physics labs and national physics organizations, 2) They will develop a taxonomy of informal physics programs from which we can characterize the landscape of programs, and 3) by investigating both "successful" as well as "failed" or terminated programs, they will develop an understanding of the culture and resources needed to support outreach from these research findings. In addition, they will produce published works that can be utilized by informal practitioners and administrators in physics to examine current programs and guide the development of new programs. With regards to the research questions and framework, the overarching and driving question for this research project is: "What is the landscape of informal physics learning, specifically, of those programs in the United States facilitated by physicists and physics students at academic institutions, national labs and by national physics organizations?" This study will provide a robust understanding of the state of informal physics programs and outreach by physicists in the United States today. Findings will inform practitioners and administrators as to how best to support and design informal physics programming. The results will also have broad implications for other discipline-specific informal STEM programming. The primary data collection methods will be a nationwide survey and interviews with a large sample of informal practitioners from the physics community. Site visits will be conducted with a subset of these programs in order to observe programs in action and to glean insights from university participants, community partners, public, and K-12 audiences.
DATE: -
TEAM MEMBERS: Kathleen Hinko Noah Finkelstein