This award supports a conference that will inform the design of "backbone" organizations for the NSF INCLUDES (Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science) program. NORC at the University of Chicago (an independent research institution that delivers reliable data and rigorous analyses to guide programmatic and policy decisions) and TERC (a nonprofit education research and development organization based in Cambridge, MA, dedicated to improving STEM learning for all) collaborate on Envisioning Impact, a two-part in-person and virtual event that will inform the design of INCLUDES Alliance and National Network backbone organizations.
The objectives of the conference are to: (1) facilitate a shared vision of impact for INCLUDES broadening participation projects and program; (2) stimulate discourse on key elements of a shared measurement system for continuous improvement and outcome assessment; and (3) inform decisions on the infrastructure and priority services INCLUDES backbone organizations will provide to assist grantees (and others) in assessing progress towards collective impact. The conference will bring members of three communities together: PIs and evaluators of INCLUDES Design and Development Launch Pilots; investigators and evaluators of other NSF-supported broadening participation alliances, extension projects, and other collective efforts to support inclusion and diversity in STEM; and members of prior and extant NSF-supported knowledge-networking, collaboratory, and resource network initiatives. Members of these communities will collaborate in two separate events: an in-person, 1.5 day conference, and a follow-on virtual Video Hall that will allow a larger number of participants to engage, over a one week period, in facilitated community discourse around short video narratives produced by each project.
DATE:
-
TEAM MEMBERS:
Kevin BrownSarah-Kathryn McDonaldJoni Falk
resourceprojectProfessional Development, Conferences, and Networks
The National Science Foundation's (NSF) Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) intiative supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities.
The University of Cincinnati, lead for a tri-state (OH, KY, IN) project, will convene a three-day conference to convene national and local experts to explore the best practices that support the development of a backbone organization in the context of using a social innovation model for broadening participation in STEM. The intent is to strengthen the network among participants and leverage learning from the Cincinnati Strive experience with collective impact across the Midwest and beyond.
Results from the NextLivesHere: Social Change Innovation Summit, will be disseminated in the tri-state region through the Greater Cincinnati STEM Collaborative (GCSC and the Ohio STEM Learning Network (OSLN). National dissemination will occur through informal and formal STEM professional organizations and publications as well as through participation in the NSF-developed national backbone organization.
DATE:
-
TEAM MEMBERS:
Kathie MaynardRoss MeyerShiloh TurnerGeoffrey ZimmermanGisela Escoe
resourceprojectProfessional Development, Conferences, and Networks
The NSF INCLUDES program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities.
The University of California-Irvine (UCI), in partnership with the University of California-San Diego and the University of California-Davis will convene a state-wide conference on inclusion in science, technology, engineering and mathematics (STEM) higher education. The California STEM INCLUDES Conference and Network will share best practices for promoting STEM inclusion and provide an infrastructure to further these practices and track the outcomes. The purpose of the conference is to form a backbone for a large regional network in support of the National Science Foundation's Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES) initiative.
The five goals of the conference are to:
--increase California educator awareness of demographic gaps in STEM participation and the research on factors influencing such participation gaps;
--engage participants in discussion of promising practices for increasing STEM inclusion
--broaden the impact of existing successful programs for STEM inclusion, through program modification and replication, scale-up, and increased collaboration;
--create a mechanism for sustained discussion, sharing and collaboration around STEM inclusion across California institutions;
--create central repository and common standards for reporting on STEM inclusion and implementation program impact for the state.
Approximately 340 individuals serving a broad cross-section of California's K-12, higher education, public, private and non-profit constituencies will participate in 2 ½ days of intense dialogue on topics such as data and research, successful implementations and sustainable networks for collaboration and sharing. The conference will be held in Spring 2017.
DATE:
-
TEAM MEMBERS:
Michael DenninSarah Eichhorn
resourceprojectProfessional Development, Conferences, and Networks
This award supports the collaborative efforts of the National Alliance for Partnerships in Equity Education Foundation, FSG, the Aspen Institute, the Collective Impact Forum, 100Kin10, National Girls Collaborative Project, Women in Engineering Pro-Active Network, MentorNet, Science Museum of Minnesota, Changing Communities, National GEM Consortium, American Society for Engineering Education and the Education Development Center to implement a project to inform the design of the National Science Foundation's (NSF) Inclusion across the National of Communities of Learners of Underrepresented Discoverers in Engineering and Science(INCLUDES)Initiative. The NSF INCLUDES program supports models, networks, partnerships and research to ensure the broadening participation in STEM of women, members of racial and ethnic groups that have been historically underrepresented, persons of low socio-economic status, and people with disabilities. The purpose of this conference is to inform the most critical design features of the structures and supports needed so that the NSF INCLUDES Alliance mini-backbones and the National backbone can work effectively and build the capacity to transform the STEM ecosystem.
This conference will bring together the most qualified current experts in inter-organizational collaboration, intersectionality and broadening participation in STEM to apply their collective wisdom to the design of the support structures of the NSF INCLUDES Alliances and National Network. Applying the understanding of complexity theory, adaptive leadership, intersectionality and collaboration models to the field of broadening participation in STEM has the potential to disrupt the current system enough to build capacity to create impactful Alliances. The outcomes of this convening have the potential to advance knowledge for all organizations working to broaden impact in STEM as well as those applying inter-organizational collaboration to the field of social innovation. Using intersectionality as a lens in developing more effective collaborative efforts that are responsive to the organizational partners and the context of the communities they serve can add a critical element to this field. The diverse members of the organizing committee can disseminate the results of this work to multiple networks where the results can impact the practice of inter-organizational collaboration and broadening participation in STEM.
SRI International and the Carnegie Foundation for Advancement of Teaching will jointly lead a workshop with the dual goals of supporting INCLUDES (Inclusion across the Nation of Communities of Learners that have been Underrepresented for Diversity in Engineering and Science) Launch Pilots during their first year and contributing to plans for a National Backbone. The workshop will strengthen and deepen the potential for rapid, continuous improvement cycles within and across INCLUDES networks. To do so, they will combine the expertise of SRI and Carnegie in improvement science, rapid analytics, and fostering networks of researchers and practitioners to engage participants in conducting a complete improvement cycle within and across INCLUDES Launch Pilots.
The workshop will have three phases. A first phase, conducted online, will share expertise related to each of the four parts of a complete improvement cycle: (1) problem definition, (2) data collection, (3) formative evaluation, and (4) effective communication. This first phase will combine an initial presentation with facilitated, online opportunities to interactively engage in the topics. A second phase, conducted face-to-face, will work intensively with teams from INCLUDES networks to improve their operational and long-term plans. The third phase will reflect and report on the workshop and contribute plans to build capacities for the National Backbone organization. Through the combination of these three phases, they will support the first-year work of INCLUDES teams and also refine understanding of how a national network could combine online and face-to-face elements to advance INCLUDES efforts. The workshop team will create and disseminate resources that are immediately useful to INCLUDES and related projects, and the workshop will openly coordinate with other workshops to achieve synergies. The online offerings will be open, broadly advertised, and permanently available. The lessons learned regarding plans for a national backbone will be disseminated broadly. In addition to participants from INCLUDES networks, additional stakeholders will be invited to both phases so as to shape the future plans to achieve broader impacts aligned with overall INCLUDES goals.
"Strengthening Networks, Sparking Change: Museums and Libraries as Community Catalysts" combines findings from a literature scan and input from the library, museum and community revitalization fields with case studies about the experiences and vision of museums and libraries working to spur change in their communities. It describes the complementary conceptual frameworks of social wellbeing and collective impact and explains how libraries and museums can use these concepts to partner with community-based organizations, government agencies and other cultural or educational organizations. It
DATE:
TEAM MEMBERS:
Michael NortonEmily Dowdall
resourceprojectProfessional Development, Conferences, and Networks
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This conference proposal represents the first phase of a larger three-phase participatory research project that will use communities of interest as a vehicle for solving problems of common concern about designing youth-based STEM programs. It will set the stage for research over the next 10-25 years about the long-term impact of a variety of youth programs on STEM learning and career aspirations. Through a virtual format, the Association of Science-Technology Centers will bring together two representatives from ten long-standing youth programs, experts in the field of out-of-school time youth programming, and researchers to collaboratively develop a program profile template for measuring the impact of youth programming. The program profile template will help identify specific characteristics that will capture the influence of youth programs on their participation in out-of-school STEM activities.
The program profile template will be the main outcome from the conference. It will serve as the foundation for designing long-term impact studies that support the needs of program staff interested in improving youth programming in informal environments. It will also allow program staff and researchers to document and share intellectual capital, compare goals and features across programs, and support network efforts among informal agencies worldwide. The program profile template will be shared online through informalscience.org, the Association of Science-Technology Centers' communities of practice networks, and through other out-of-school-time national organizations.
The Museum of Science (MOS) will conduct a conference and associated activities to consider ways to foster the STEM workforce via both science research and science communications experiences for students at the high school level. The work will draw on and expand the scope in the USA of the NSF-funded National Living Laboratory Network which currently involves more than 350 institutions across 48 states and 21 countries. The National Living Laboratory initiative involves university researchers and museum professionals in co-implementing research and science communications activities in museum settings with the public, primarily families with young children. The research and communications focus is on cognitive science pertaining to the development of young children. While many scientists and museum professionals are interested in integrating high school research experiences into their practices, particularly for under-represented youth, existing infrastructure at museums and universities limits the quality of experiences and quantity of students that institutions can support. Current academic and museum members of the National Living Laboratory community have identified an opportunity to advance shared interests and knowledge in engaging youth in STEM by leveraging the Living Laboratory framework.
This project involves pre- and post- conference activities and will convene a group of science research and museum professionals at a workshop in Boston, MA to: 1) document current opportunities and challenges in engaging high-school aged youth in cognitive science research activities; 2) outline strategies to engage youth in research and science communication through Living Laboratory, with particular emphasis on cognitive sciences; and 3) create and disseminate a report on workshop outcomes through existing communication channels in both fields. The project includes pre-conference surveys of professionals about the topic and an evaluation of the project activities and outcomes. It is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
Well-designed educational games represent a promising technology for increasing students interest in and learning of STEM topics such as physics. This project will research how to optimally combine and embed dynamic assessment and adaptive learning supports within an engaging game design to build effective educational games. The project will add enhancements to a physics game called Physics Playground. The general goal of this research is to test a valid methodology that can be used in the design of next-generation learning games. The enhancement of Physics Playground will leverage the popularity of video games to capture and sustain student attention and teach physics to a much broader audience than is currently the case in traditional physics classrooms. To be most effective, this new genre of learning games needs to not only be highly engaging as a game but also to provide real-time assessment and feedback to students; support understanding of science content (i.e.,Newtonian physics); be accessible to beginners; accommodate a range of proficiencies and interests; and support equity. The research will have particular relevance to designers developing other science games and simulation by providing information about the kinds of learning supports and feedback to students are most effective in promoting engagement and learning. The project is supported by the Cyberlearning and Future Learning Technologies Program, which funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively.
The project will systematically develop, test, and evaluate ways to integrate engaging, dynamic learning supports in Physics Playground to teach formal conceptual physics competencies. More generally, the project aims to advance the learning sciences, particularly in the fields of adaptivity and assessment in educational technology. Using a design-based research approach spanning three years, the research team will: (1) develop and test the effectiveness of various learning support features included in the game in Year 1; (2) develop and test an adaptive algorithm to manage the progression of difficulty in game levels in Year 2; and (3) test learning supports and adaptive sequencing in a controlled evaluation study. This research will provide evidence of the instructional effectiveness of an educational game designed using principles of instructional, game, and assessment design. It will advance understanding of the contributions of different kinds of learning supports (e.g., visualizations and explanations) and adaptivity to game-based learning and contribute to the design of next-generation learning games that successfully blur the distinction between assessment and learning. The project will generate research findings that can be incorporated into other types of STEM learning games.
DATE:
-
TEAM MEMBERS:
Valerie ShuteRussell AlmondFengfeng Ke
The project will conduct a nation wide study to address three broad questions:
(1) How does the public view zoos and aquariums and how do these institutions affect STEM (Science Technology Engineering Mathematics) learning outside their walls?
(2) How do visitors experience zoos at different stages in their lives and how do zoo visits affect their knowledge and perspectives concerning environmental issues and conservation?
(3) What are the entry characteristics of visitors and how do those characteristics play out in behaviors during a visit?
The project is designed to advance understanding of how informal STEM learning emerges through the intersection of institutional pedagogy and learning goals and the characteristics of individuals and their social and cultural backgrounds. As the first institutional study that advances a field-wide research agenda, the project will map how to implement a national collaborative effort that can help refine program delivery and cooperation between zoos, aquariums and other STEM learning institutions.
The study will describe zoo and aquarium visitors based on a broad understanding of demographics, group, and individual perspectives to expand understanding of how these factors influence visitor learning and how they view the relevance of educational messages presented by zoos and aquariums. The project will result in reports, workshops and a handbook presenting findings of practical value for educators, a research platform and research tools, online discussion forums, and directions for future research. The project, led by New Knowledge Organization (NKO), will be carried out through the collaboration of NKO with other informal research organizations and the Association of Zoos and Aquariums (AZA) with its 230 informal science learning institutional members. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
This project, a collaboration of teams at Georgia Institute of Technology, Northwestern University, and the Museum of Design Atlanta and the Museum of Science and Industry in Chicago, will investigate how to foster engagement and broadening participation in computing by audiences in museums and other informal learning environments that can transfer to at-home and in-school engagement (and vice versa). The project seeks to address the national need to make major strides in developing computing literacy as a core 21st century STEM skill. The project will adapt and expand to new venues their current work on their EarSketch system which connects computer programming concepts to music remixing, i.e. the manipulation of musical samples, beats and effects. The initiative involves a four-year process of iteratively designing and developing a tangible programming environment based on the EarSketch learning environment. The team will develop three new applications: TuneTable, a multi-user tabletop exhibit for museums; TunePad, a smaller version for use at home and in schools; and an online connection between the earlier EarSketch program and the two new devices.
The goal is to: a) engage museum learners in collaborative, playful programming experiences that create music; b) direct museum learners to further learning and computational music experiences online with the EarSketch learning environment; c) attract EarSketch learners from local area schools to visit the museum and interact with novice TuneTable users, either as mentors in museum workshops or museum guests; and d) inform the development of a smaller scale, affordable tangible-based experience that could be used at homes or in smaller educational settings, such as classrooms and community centers. In addition to the development of new learning experiences, the project will test the hypothesis that creative, playful, and social engagement in the arts with computer programming across multiple settings (e.g. museums, homes, and classrooms) can encourage: a) deeper learner involvement in computer programming, b) social connections to other learners, c) positive attitudes towards computing, and d) the use and recognition of computational concepts for personal expression in music. The project's knowledge-building efforts include research on four major questions related to the goals and evaluation processes conducted by SageFox on the fidelity of implementation, impact, success of the exhibits, and success of bridging contexts. Methods will draw on the Active Prolonged Engagement approach (unobtrusive observation, interviews, tracking-and-timing, data summaries and team debriefs) as well as Participatory Action Research methods.
This work is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
DATE:
-
TEAM MEMBERS:
Michael HornBrian MagerkoJason Freeman
The overall goal of this project is to develop and evaluate a community model of informal genomic education that is culturally and educationally appropriate for low-literacy Latino adults born in Mexico and Central America (MCA). The community engagement strategy and materials created will be designed to lead to three learning outcomes: increased interest and engagement with genomics, change in science, technology, engineering, and mathematics (STEM) attitudes and self-identity, and increased understanding about gene function and the human genome. The model created in this project will have the potential to inform other educational efforts, nationally. Semi-structured in-depth interviews will be conducted in Spanish with 60 MCA Latinos to delineate beliefs and knowledge about genetic and genomic concepts and transmission of traits. Interview transcripts will be systematically analyzed to identify explanations about trait transmission, and familiarity with genetic and genomic concepts. Variation in responses across geographic and cultural regions will be noted. Knowledge from this analysis will be used to develop a meaningful community-based learning program about genomics. Lay community educators will facilitate informal learning with MCA adults about genetics and genomics, including gene-environment interactions. This project will use information about environmental exposures (e.g., residential pesticides) as a vehicle to pique participants' interest and illustrate genetic and genomic content. It will compare outcomes for 100 participants who receive practical strategies only to reduce negative and increase positive environmental exposures, respectively, to 100 participants who also receive genetic and genomic content. The strategy and materials will be disseminated through journal articles and presentations at meetings that focus on informal STEM education. The process and content will be rigorously evaluated throughout the project. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.