This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a series of mobile apps to guide families through sequenced sets of videos and hands-on activities. To support families at home it would also develop a new library model to build librarians' computational thinking content knowledge and self-efficacy so they can support parents' efforts with their children. Computational thinking is a an increasingly critical skill for learning and success in the workforce. It includes the ability to identify problems, brainstorm and generate solutions and processes that can be communicated and followed by computers or humans. There are few projects that introduce computational thinking to young children. Very little research has been done on the ways that parents can facilitate children's engagement in CT skills. And developing a model that trains and supports librarians to become virtual coaches of parents as they engage with their children in CT, will leverage and build the expertise of librarians. The project's target audience includes parents and children living in rural areas where access to CT learning may be very limited. Project partners include the EDC, a major research organization, the American Library Association, and BUILD, a national association that promotes collaborations across library, kindergarten readiness, and public media programming.
The formative research study asks: 1) What supports do parents of preschoolers in rural communities need in order to effectively engage in CT with their children at home? and 2) How can libraries in rural communities support joint CT exploration in family homes? The summative research study asks: 3) how can an intervention that combines media resources, mobile technology, and library supports foster sustained joint parent/child engagement and positive attitudes around CT? Researchers will develop a parent survey, adapting several scales from previously developed instruments that ask parents to report on children's use of CT-related vocabulary and CT-related attitudes and dispositions. Survey scales will assess librarians' attitudes towards CT, as well as their self-efficacy in supporting parents in CT in a virtual environment. During the formative study, EDC will pilot-test survey scales with 30 parents and 6 librarians in rural MS and KY. Analyses will be primarily qualitative and will be geared toward producing rapid feedback for the development team. Quantitative analyses will be used on parent app use, using both time query and back-end data, exploring factors associated with time spent using apps. The summative study will evaluate how the new media resources and mobile technology, in combination with the library virtual implementation model, support families' joint engagement with CT, and positive attitudes around CT. The researchers will recruit 125 low-income families with 4- to 5-year-old children in rural MS and KY to participate in the study. They will randomly assign families within each library to the full intervention condition, including media resources, mobile technology, and library support delivered through the virtual implementation model, or the media and mobile-technology-only condition. This design will allow researchers to understand more fully the additional benefit of library support for rural families' sustained engagement, and conversely, see the comparative impact of a media- and mobile-technology only intervention, given that some families might not be able to access virtual or physical library support.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Tino NyaweloJohn MatthewsJordan GertonSarah Braden
The Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. An ongoing challenge to the design of effective STEM learning exhibits for diverse young children is the absence of reliable and evidence-based resources that designers can apply to the design of STEM exhibits that draw upon play as a child's primary pedagogy, while simultaneously engaging children with STEM content and processes that support development of STEM skills such as observation. To address these challenges, the project team will use a collaborative process in which learning researchers and informal STEM practitioners iteratively develop, design, and test the STEM for Play Framework that could then be applied to the design of STEM-focused exhibits that support play and STEM skill use among early learners.
This Research in Service to Practice project will address these questions: 1) What is a framework for play in early STEM learning that is inclusive of children's cultural influences?; 2) To what extent do interactions between early learners (ages 3-8) and caregivers or peers at exhibits influence the structure and effectiveness of play for supporting STEM skill development?; 3) How do practitioners link play to STEM skill development, and to what extent does a framework for play in early STEM learning assist in identifying types of play that supports early STEM skill development?; and 4) What do practitioners identify as best practices in exhibit design that support the development of STEM skills for early childhood audiences, and conversely, to what extent do practitioners perceive specific aspects of the design as influential to play? The project team will address these questions across four phases of study that will include (a) development of a critical research synthesis to inform the initial STEM for Play framework; (b) the use of surveys, focus groups, and interviews to solicit feedback from practitioners; (c) testing and revising the framework by conducting structured observations of STEM exhibits at multiple museums. The project team will use multiple analytic approaches including qualitative thematic analyses as well as inferential statistics. Results will be disseminated to children?s museums, science centers, and research communities.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
While there is increased interest in youth-centered maker programs in informal educational contexts, scarce research-informed professional development exist that focus on how informal educators do or should plan and handle ongoing, just-in-time support during moments of failure. Prior research supports the important role of failure in maker programming to increase learning, resilience and other noncognitive skills such as self-efficacy and independence. The objective of this project is to address this gap through adapting, implementing, and refining a professional development program for informal educators to productively attend, interpret, and respond to youths’ experiences with failure while engaged in maker programs in informal learning contexts. In the first two years of the project, the research team will work closely with six partners to implement and refine the professional development model: The Tech Museum of Innovation, The Bakken Museum, Montshire Museum of Science, The Minneapolis Institute of Art, Thinkery, and Amazeum Children’s Museum. In the last year of the project, the team will scale-up the professional development model through partnering with an additional nine institutions implementing maker programming for youth. The professional development consists of two models. In the first model, we support one to two lead facilitators at each partnering institution through an initial three-day workshop and ongoing support meetings. In the second model, the lead facilitators support other informal educators at their institution implementing making programs for youth. This project will enhance the infrastructure for research and education as collaborations and professional learning communities will be established among a variety of informal learning institutions. The project will also demonstrate a link between research and institutional and societal benefits through shifting the connotation and perceptions of failure to be valued for its educational potential and to empower informal educators to support discomfort and struggle throughout maker programs with youth.
The three goals of this collaborative project are to (a) advance the field of informal education through a research-based professional development program specific to youths’ failures during maker programs; (b) support shifts in informal educators’ facilitation practices and perspectives around youth’s failure experiences, and (c) investigate the effects of the professional development on youths’ resilience and failure mindset. The iterative nature of this project will be informed by the collection and analysis of video data of professional development sessions and informal educators facilitating maker programs, reflective journaling, surveys regarding the professional development, and pre-post surveys from youth engaged in the maker programs. Dissemination will address multiple stakeholders, including informal educators, program developers, evaluators, researchers, and public audiences.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
Over the past two decades the prevalence of Autism Spectrum Disorder (ASD) has nearly tripled and yet there is much to learn about serving this audience well. After high school exit, most are left to navigate the world without appropriate support or the requisite skills necessary for success. Educators working in informal science institutions (ISI) can better promote both social interaction and engagement in STEM education for individuals with ASD. A learning environment in which the learner chooses content aligned with their personal interests and where learning can be multifaceted (verbal, hands-on, fast or slow, social or solitary, directed or inquiry based, physical, etc.) is consistent with the central tenets of an evidence-based, outcome-driven approach for autism intervention. ISI educators have the desire but may not have sufficient and timely knowledge and skills to engage and support this audience. Currently, many are working at the local level to develop new programs and approaches for patrons with ASD, with little evaluation or research and not building on each other's work. The project will develop a rigorous customized professional learning experience designed to enhance capacity of ISIs broadly in ASD support techniques and strategies. The goal is to enable more inclusive opportunities for people with ASD based on current and emerging promising practices. The project's theory of action is that the ability of people with ASD to participate in traditional, mainstream experiences will improve their motivation to seek other similar opportunities, build interpersonal skills critical to successful interaction in society, formal education, and careers. This, in turn, will help individuals with ASD gain the skills and confidence needed to pursue STEM academically and professionally. The project is a collaboration between the Institute for Learning Innovation, the SciTech Institute, and the Southwest Autism Research & Resource Center (SARRC). This project is funded by the Advanced Informal STEM Learning program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments.
The pilot's main research questions are: (1) To what degree does the professional learning program support the learning outcomes in knowledge, awareness, interest, skills, attitude, and behavior change in informal science education providers? and (2) What features of the program do educators consider most effective for improving their ability to serve this audience? Four Arizona ISIs will participate in a research-based design study; their staff will also comprise the founding members of a Community of Practice aimed at sharing promising practices and promoting broader engagement among the informal science education community. The professional development (PD) will be provided by SARRC. New formative evaluation skills will support ongoing innovation and build participant capacity. Leveraging this training, the ISIs will create and test new approaches and programs, apply new skills in formative evaluation, and develop internal workplace programs to create cultures of ASD understanding. A pilot research study will recruit 20 diverse individuals with ASD who will visit each institution prior to and after the PD for staff. The research will measure the degree to which the PD impacts attendee experience as well as assess the science learning that occurred because of their visit. This project will advance collaboration between ASD experts and ISI educators to iteratively develop effective museum learning strategies. Other goals of this work are to provide important insights into (a) the current state of accessibility programs in ISI venues nationally, (b) how PD can be leveraged to help institutions reach true inclusion, and (c) initial evidenced-based approaches for inclusion of individuals on the Autism spectrum in mainstream informal environments. In addition to the research findings, deliverables include an ASD PD model, national inventory of current practices and programs that support ASD learning and participation, and the establishment of a Community of Practice.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The science museum field is only starting to look at ways of providing visitors with opportunities for the authentic observation of complex, real-time biological phenomenon. The project will develop and research a microscope-based exhibit with pedagogical scaffolding (i.e., helpful prompts) that responds to visitors' changing views as they explore live samples and biological processes. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches, and resources for use in a variety of settings. Scientific observation is a systematic, complex practice, critical in the biological sciences where investigation is heavily reliant on visual data. Using techniques and equipment similar to what scientists themselves use, the exhibit will enable visitors to see and explore the complex, dynamic visual evidence that scientists themselves see. The exhibit will use new and more affordable high-resolution imaging technology and image analysis software to make microscopic images of living organisms visible. Armed with "smart" (i.e., computer-assisted) pedagogical scaffolding that supports inquiry, the project will develop exhibits that help informal learners bridge the gap between everyday observation and authentic scientific observation. The platform will incorporate strategies grounded in prior work on learning through observation that will be applicable to a range of biological content and live specimens. The project platform will be designed for use to a variety of informal science learning environments, including nature centers and mobile laboratories as well as interactive science centers. The project platform itself, including the microscope, related imaging, and learning technologies will be relatively inexpensive, bring it within reach of small science museum and schools. The exhibit will directly engage thousands of learners who visit the Exploratorium and will reach underserved audiences through partnerships with BioBus, a mobile unit that serves the New York City area, and the Noyo Center of Marine Science, a science museum that serves rural areas in Northern California.
The project will move beyond simulation and modeling of complex visual phenomena and provide learners with experiences using real visual evidence that can deeply engage them with the content and practice of biological science. By grounding the work in prior theoretical and empirical findings, project research will refine and broaden understanding of scaffolding strategies and their effect on informal science learning at exhibits. Project research will investigate how the project supports learners (1) asking productive questions (i.e., those answerable through observations) that are meaningful to them, (2) interpreting what they see, and (3) connecting their observations to biological concepts to build a more coherent understanding of the content and practice of biological disciplines. A series of comparative studies across and within venues, specimens, and content will assess engagement and scaffolding strategies, with a particular focus on appropriately integrating computational imaging techniques in a way that is responsive to the interests and needs of different venues' audiences. Project research will contribute important knowledge on ways to support informal learners who are engaged in authentic observation of biological phenomenon. Project research findings and technology resources will be widely shared with informal STEM researchers and practitioners concerned with engaging the public in current research in biology, as well as those interested in supporting observation in other disciplines (e.g., meteorology, ocean science, environmental science) that rely on an evidence base of live, dynamic, complex imagery.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Implicit bias and inequities limit the quality, effectiveness, and widespread acceptance of the outdoor and environmental science education field. The field continues to struggle to find resonance with the most tenacious concerns and challenges of communities of color, especially with regards to environmental issues that disproportionately impact the health and economies of these communities. In a time of calls to action to dismantle systemic racism and bias, there is a renewed interest in solution driven approaches to address matters of equity, inclusion, and cultural relevance in education and within organizational change frameworks. This Innovations in Development project will develop and test a model to build individual and organizational capacities to create and sustain equitable, inclusive, culturally relevant workplaces and learning environments, and support professionals of color currently in positions in outdoor science programs and may be at risk of leaving the field. With capacity building support for systems change, the model will help organizations to lead with equity as they plan for the future. The need for this work could not be timelier. If successful, the knowledge gleaned from the Working Toward Equitable Organizations model could inform future efforts to transform the field through institutional changes that result in a more diverse STEM workforce at all levels of leadership and inclusive programs and practices that support STEM learning and engagement in outdoor and environmental science education programs.
Over the three-year project duration, the project will be centered on two strands: (1) Support for Organizational Systems and (2) Professionals of Color Engagement. For the first strand, two cohorts of outdoor science program leaders will engage in intensive reflection, professional learning, and development. They will consider all aspects of their work through an equity lens, develop action plans, and make necessary adjustments to curricula, guiding documents, and practices. For the second strand, a cohort model will be used to create professional learning and engagement communities for professionals of color in outdoor science programs as they navigate the challenges associated with being in the minority in a predominately white-dominated field. In addition, a rigorous research study will be conducted to examine how the professional learning model contributes to changes in organizations to create more inclusive and equitable career paths for professionals of color and will describe under what conditions outdoor science programs are able to make institutional change. A culturally responsive evaluation will inform the design and development of the model and assess its effectiveness. Together, the evaluation and research will identify promising aspects of the work and directions for future scaling. The project will develop and document a scalable model for program leaders and professionals of color that builds the capacity of organizations to promote equity, inclusion, and cultural relevance. It is poised to impact twenty organizations nationwide, 60 professionals of color and ultimately, 200,000 students annually.
This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Craig StrangValeria RomeroJedda Foreman
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.
The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.
This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Katherine Isbister
resourceprojectProfessional Development, Conferences, and Networks
In the 1990s, Science Cafes emerged that brought together people from all walks of life with scientists in conversation over science, technology, engineering, and mathematics (STEM) topics. The cafes were popular as conversations were informal in casual settings and engendered deep discussions. In 2007, Science Education Solutions received a grant from NSF and began an experiment to see if the adult science café model could be adapted to appeal to high school teens. The program, Café Scientifique New Mexico, became very popular with teens in towns across northern New Mexico. The blend of conversing with scientists about interesting science topics in an out-of-school social setting and digging deeper with hands on activities proved successful. The teen model was refined through trial and error and formal evaluation over several years. Today it continues to provide teens with a new perspective on the nature of science and a picture of scientists as real people leading interesting lives. The Teen Science Café Network (TSCN) was formed in 2012 with NSF funding to allow other individuals and organizations to start their own versions of the Teen Science Café, adapted to their local institutions and demographics. Five founding member organizations around the United States formed the initial Network and each began creating their own Teen Science Café programs. Today the TSCN is a dynamic, growing community of practice spread across the country with the mission of connecting high school teenagers with STEM and STEM experts via the science café model. The network currently has approximately 133 member organizations in 46 states and Canada. This project will move the network to a much larger scale by creating organization and professional support structures to create a strategically growing social movement with distributed leadership, organizational infrastructure, and robust professional development for long-term stability with a goal to increase the number of member organizations to 500 over five years. Building on the literature on professional development for informal science educators and the literature on network capacity building, network sustainability, and scale, the project will also conduct research that will inform the field about successful model diffusion. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understanding of deeper learning by participants.
This Innovations in Development project has five objectives. The first is to re-structure the Teen Science Café Network (TSCN) to a more distributed leadership model that will move the network to long-term sustainability. The PI team will identify five experienced individuals already leading strong café programs to become Guides for new sites. These Guides will provide training, support, and mentorship to new network members. Each Guide will have responsibility over a given year for mentoring two cohorts of nine sites, allowing the network to increase in size over the next five years. The second objective is to implement an interactive program of professional development for new network members. The training will involve approximately 15 hours of adult leader training focused on building skills around teen engagement and café management. The third objective will be to strategically engage all members in the network community of practice through opportunities to participate in and lead ongoing learning with their peers. Through webinars, Birds of a Feather groups and annual workshops and a Science Events Summit, café leaders will actively hone professional skills and broaden their personal network. Objective four is to broaden the involvement of organizations and communities not currently in the network through strategic recruitment of STEM professional societies, military youth programs, library networks, and youth-serving organizations, among other organizations. Finally, objective five is to implement a research agenda to contribute to the informal learning knowledge base. The research will focus on how the project's approach to network growth and distributed leadership leads to effective scaling and sustainability.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Makerspaces are learning environments that engage participants in authentic science and engineering practices, using hands-on and collaborative approaches to support activities and projects that foster creativity, interest, and skill development. Recently there has been a rapid growth of makerspaces in schools and in informal places like museums, libraries, and community centers. However, many of these spaces are not accessible to all members of society. This project will produce a model for a STEM makerspace that focuses on increasing access. The model has four critical components that operate together: affordable housing, informal STEM learning, maker education, and multi-generational learning. This project will develop and study the community-based, multigenerational makerspace model for Bayview Towers, a 200-unit affordable housing complex in Connecticut. The Multi-Gen STEM Makerspaces project brings together CAST, a non-profit education research organization, the NHP Foundation/Operation Pathways, a national affordable housing provider, and the Boston University Social Learning Lab, which researches the social context for STEM learning. The project will produce a Multi-Gen Maker Playbook comprised of an educational guide for a series of four-week workshops around different themes and modes of making. The Playbook will also serve as a program model that guides similar communities on how to create and run sustainable and thriving maker programs of their own. Families in the Bayview Towers community will build an understanding of science, technology, engineering, and mathematics (STEM) concepts through participation in an onsite makerspace. Families will relate what they are doing through making to longer-term goals connected to STEM learning, education, and careers. The project will also enable the engagement of individuals in the co-design (individuals provide creative contributions) of making that can be translated into community structures and values that support a sustainable makerspace. The affordable housing context will provide understanding of individual and other social factors that impact learners' sense of STEM identity. The project will support mobility from poverty by including STEM learning as part of the resident services.
The research will examine how low income communities access, engage, and learn in makerspaces, and relate their learning to relevant goals. The team will use design-based research (DBR) whereby participants and researchers work together to design interventions intended to explore theory through cycles of enactment, analysis, and revision. The DBR research will answer the following questions:
In what ways, if any, does the model support residents experiencing STEM learning as consequential?
What kind of making goals do residents set and how do they embed STEM in these goals?
If residents experience STEM learning as consequential through the workshops, do they also see the relationship between their making goals and longer term goals?
Do those residents that use the makerspace more frequently experience more positive outcomes in terms of consequential STEM learning?
How do the various makerspace structures - training of facilitators, dedicated space and equipment, Playbook - support the model?
Are groups of residents participating regularly in the makerspace and if so, who is in these groups? Do these groups start to identify as a maker community? Is the community finding the makerspace of value?
In what ways does the organization and operations of the makerspace support building a sustainable model for multigenerational and consequential learning?
Participants will include 90 youth and 90 adults from the resident community at Bayview Towers. Research data to be collected includes open-ended response measures for scoring residents' interpretation, analysis and understanding of each workshop elements. Also, interview protocols will be used to guide the refinement of the Multi-Gen Maker Playbook features and analyze usability, feasibility, engagement and user experience of the Multi-Gen Maker Playbook within the platform. The program will use semi-structured interview protocols on participants' goals and STEM identity and focus group protocols on community maker values and makerspace structures. Additionally, a Likert-style survey on STEM identity will also be adapted from the Science Identity Scale. Project evaluation will examine the overall achievement of program goals and objectives. Project results will be communicated by traditional means of dissemination to scholars and practitioners. The team will also create targeted digital media, including online articles, podcast interviews, and blog posts, to reach a broader audience.
This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Sam Catherine JohnstonKathleen CorriveauJess GropenKim DucharmeKenneth White
resourceprojectProfessional Development, Conferences, and Networks
Potential STEM talent is lost each day for some of the most underserved and underrepresented populations in our nation's incarcerated men, women, and youth. With years devoid of quality STEM education and opportunities while in prison, incarcerated individuals are often significantly underprepared in STEM and for the STEM workforce. This educational debt exacerbates the pattern of marginalization for these vulnerable populations. Their STEM literacy, employability and potential for earning sustainable wages upon release are stifled. This deficit in opportunity is especially stark for underrepresented groups in the United States. Roughly 61% of the prison population is non-white, which far exceeds the national average of 35%. The U.S. also has the highest per capita incarceration rates in the world, incarcerating 698 men, women, and youth for every 100,000 people. Equally unsettling, for the first time in American history the population growth rate for incarcerated women has outpaced men by almost 2 to 1 for the past 25 years. While there are many contributing factors to the high rate of incarceration in the U.S., high quality prison STEM education programs have been shown to help counter socio-economic and education debts through greater STEM knowledge attainment, successful societal integration, and increased wage and advancement potential, which increase the likelihood that formerly incarcerated individuals and their children can live productive lives. The NSF INCLUDES STEM Opportunities in Prison Settings (STEM-OPS) Alliance endeavors to build a national network aimed at providing and supporting viable pathways to STEM for the incarcerated and formerly incarcerated. Using a collective impact approach, the Alliance will work collaboratively with key stakeholders and the target population to advance extant and untapped knowledge on high quality prison STEM education and opportunities. This work builds on efforts supported by the National Science Foundation, including exploratory work piloted by two NSF INCLUDES Design and Development Launch Pilots. If successful, this Alliance has the potential to significantly transform the face of the STEM workforce and the narrative regarding the incarcerated and formerly incarcerated and their potential to succeed in STEM.
The STEM-OPS Alliance is comprised of partner organizations committed to ensuring that STEM preparation during and post incarceration is commonplace and successful. During its first year, the Alliance will focus on establishing its national network through a shared vision and goals and a collective impact approach. It will conduct systems ecology mapping to inform the supports and resources needed for the target population to succeed in STEM. Focus groups and interviews will be conducted with incarcerated middle/high school aged youth to better understand their experiences in K-12 schools and with STEM education prior to and during incarceration. The results of the mapping and youth study will be used to inform the future work of the Alliance. Affordances the network endeavors to achieve include: (a) creating accessible STEM opportunities for the target populations through STEM courses, in-prison laboratories, research experiences for undergraduates (REUs), internships, and mentoring, (b) a culturally responsive platform to connect formerly incarcerated job seekers with STEM employment opportunities, (c) an evidence-based toolkit for effective STEM in-prison program design and implementation, (d) an annual convening of key stakeholders and representatives from the target populations to share learnings, disseminate findings and resources, and support the growth and development of the Alliance, and (d) leveraging connections to the greater NSF INCLUDES National Network. A formative and summative evaluation will be conducted by an external evaluator. Through its network, the STEM OPS Alliance is well poised to directly impact 700-880 incarcerated and formerly incarcerated men and women and reach a significant number of organizations working to improve STEM opportunities and outcomes within prison contexts.
This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. Significant co-funding has also been provided by the NSF Innovative Technology Experiences for Students and Teachers (ITEST) program and the NSF Advancing Informal STEM Learning Program (AISL).
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Eden BadertscherStanley AndrisseJannette CareyRich Milner
Diversity in the STEM workforce is essential for expanding the talent pool and bringing new ideas to bear in solving societal problems, yet entrenched gaps remain. In STEM higher education, students from certain racial and ethnic groups continue to be underrepresented in STEM majors and fields. Colleges and universities have responded by offering precollege STEM programs to high school students from predominantly underrepresented groups. These programs have been shown to positively affect students' analytical and critical thinking skills, STEM content knowledge and exposure, and self-efficacy through STEM-focused enrichment and research experiences. In fact, salient research suggests that out-of-school-time, precollege STEM experiences are key influencers in students' pursuit of STEM majors and careers, and underscore the value of precollege STEM programs in their ability to prepare students in STEM. This NSF INCLUDES Alliance: STEM PUSH - Pathways for Underrepresented Students to Higher Education Network - will form a national network of precollege STEM programs to actualize their value through the creation, spread and scale of an equitable, evidence-based pathway for university admissions - precollege STEM program accreditation. Building on several successful NSF INCLUDES Design and Development Launch Pilots, this Alliance will use a networked improvement community approach to transform college admissions by establishing an accreditation process for precollege STEM programs in which standards-based credentials serve as indicators of program quality that are recognized by colleges and universities as rigorous and worthy of favorable consideration during undergraduate admissions processes. Given the high enrollment of students from underrepresented groups in precollege STEM programs, the Alliance endeavors to broaden participation in STEM by maximizing college access and STEM outcomes in higher education and beyond.
The STEM PUSH Network is a national alliance of precollege STEM programs, STEM and culturally responsive pedagogy experts, formal and informal education practitioners, college admissions professionals, the accreditation sector, and other higher education representatives. The Alliance will establish a formidable collaborative improvement space using the networked improvement community model and a "next generation" accreditation model that will serve as a mechanism for communicating the power of precollege programs to admissions offices. Framing this work is the notion that the accreditation of precollege STEM programs is an equitable supplemental admissions criterion to the current, often cited as a culturally biased, standardized test score-based system. To achieve its shared vision and goals, the Alliance has four key objectives: (1) establish and support a national precollege STEM program networked community, (2) develop a standards-based precollege STEM program accreditation system to broaden participation in STEM, (3) test and validate the model within the networked improvement community, and (4) spread, scale, and sustain the model through its backbone organization, the STEM Learning Ecosystem Community of Practice. Each objective will be closely monitored and evaluated by an external evaluator. In addition, the data infrastructure developed through this Alliance will provide an unprecedented opportunity to advance scholarship in the fields of networked improvement community design and development, the efficacy of STEM precollege programs, and effective practices for broadening participation pathways from high school to higher education. By the end of five years, the STEM PUSH Network will transform ten urban ecosystems across the country into communities where students from underrepresented groups have increased college access and therefore, entree to STEM opportunities and majors in higher education. The model has the potential to be replicated by another 80 STEM ecosystems that will have access to Alliance materials and strategies through the backbone organization.
This NSF INCLUDES Alliance is funded by NSF Inclusion across the Nation of Communities of Learners of Underrepresented Discoverers in Engineering and Science (NSF INCLUDES), a comprehensive national initiative to enhance U.S. leadership in discoveries and innovations by focusing on diversity, inclusion and broadening participation in STEM at scale. It is also co-funded by the NSF Innovative Technology Experiences for Students and Teachers program and the Advancing Informal STEM Learning Program.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Alison Slinskey LeggJan MorrisonJennifer IritiAlaine AllenDavid Boone