This collaboration led by three major national aquariums - Monterey Bay Aquarium (MBAq), National Aquarium in Baltimore (NAIB), and New England Aquarium (NEAq) - is developing a leadership initiative to build capacity within aquariums and related informal science education institutions nation-wide, enabling education staff to engage and inspire millions of visitors to take action about climate change and the ocean. The project increases climate literacy among informal science educators by: 1) creating a national network for training, resource sharing and support; 2) developing climate change activity carts to support exhibit interpretation; 3) providing training for youth interpreters; and 4) hosting regional and national summits to strengthen collaboration and showcase and disseminate model programs. Outcomes for educators include increased knowledge of climate change science; knowledge of strategies, tools and materials for educating about climate change; and confidence in their ability to communicate about climate change.
Teen Conservation Leadership is a major integration and expansion of the Monterey Bay Aquarium's existing teen education programs (Student Oceanography Club, Young Women in Science and Student Guides). The project is growing and enhancing these programs through the following activities: - Service-Learning and Leadership Activities, including: Guest Service Track: professional development and training as interpreters Camp and Club Track: serving as a mentor for other participants Program Track: assisting in the delivery of programs - Conservation and Science Activities, including participating in and leading projects with local organizations, and participating in technologically facilitated outdoor learning experiences - Teen Network and Technology Activities, including onsite networking and information sharing through Web 2.0 technology The project will reach 930 teens. Each teen will provide 200 service-learning hours per year. The sequential nature of this project will encourage many teens to participate for multiple years.
The Nurture Nature Center (NNC) in Easton, PA, a joint project of the multi-state Nurture Nature Foundation and NNC, Inc., will install a Science on a Sphere and develop a new SOS module about climate and flooding. Working with the Maryland Science Center in Baltimore, the Da Vinci Science Center in Allentown, PA, and science advisers from NOAA and research universities, NNC will use existing SOS datasets, as well as new data formats, to create a docent-guided program that explains the connections between climate patterns and flooding. The Flood Forums: Education to Action program will engage audiences in deliberative forum programming to promote public understanding of the atmospheric, oceanic, and other climatic factors affecting flooding in some regional communities. Project deliverables include a program on climate change and flooding for SOS users; the same program calibrated for Magic Planet users; Forum models on issues related to climate change and flooding; project and evaluation reports; and training materials for SOS network members and other informal educators.
Through the Planet Earth Decision Theater project, the Science Museum of Minnesota and its partners will upgrade the museums current SOS exhibit with new SOS learning experiences, produce for the SOS community a new SOS film about the role of humans as the dominant agents of global change and two new presenter-led SOS programs based on the film with one version utilizing an audience feedback mechanism called iClickers. SMM also will complement its Planet Earth Decision Theater and the Maryland Science Center s SOS exhibit with the addition of Rain Table (a new interactive scientific visualization platform) at both locations to further reinforce the Anthropocene messages of the new SOS film and programs. SMM will conduct extensive evaluations of the new SOS film, programs and Rain Tables. SMM s partners on this project include the NOAA Environmental Visualization Lab, University of Minnesota's National Center for Earth-surface Dynamics, University of Minnesota's Antarctic Geospatial Information Center, University of Minnesota's Institute on the Environment, Maryland Science Center, Oregon Museum of Science and Industry, Institute for Learning Innovation, George Mason University s Center for Climate Change Communication, and the Electronic Visualization Laboratory at University of Illinois-Chicago.
This 2-year program will advance the way informal ocean science education institutions reach underserved/underrepresented families by facilitating and formalizing relationships between informal science education centers and community based organizations. Project teams in five New England communities will collaborate to create a practicable, outdoor ocean-science learning experience specifically designed for families in their shared service area. Building on a needs assessment produced through target-audience focus groups, the program will combine coastal field experiences with web-based interactive and participatory learning activities developed and tested by the Encyclopedia of Life (EOL; www.eol.org/) and the Northeast Regional Association for Coastal and Ocean Observing Systems (NERACOOS) to support in-field and ongoing learning. Science content will be informed and vetted by NOAA research scientists and work between the science centers and community organizations will be professionally facilitated. Formats and effectiveness will be evaluated by external evaluators and revised throughout the project.
The American Museum of Natural History, in association with several NOAA entities, will be creating a suite of media products employing visualization of Earth-observation data as well as associated professional development programs to expand educational experiences in informal science institutions nationwide. Interactive versions of the visualizations will also be disseminated via the AMNH website. Visualization assets will be distributed to NOAA for utilization on climate.gov and Science on a Sphere. The creation of training programs and educational materials for informal education professionals will enhance the experience and efficacy of the data visualizations as tools to understand and build stewardship of Earth systems.
Literacy Volunteers of America (LVA) - Monroe County, Inc. and The College of Exploration are developing and implementing a pilot project to target traditionally under-represented ethnic groups who are limited English proficient-- many reading and writing in English at the grade 0 - grade 5.5 level. The project goals are for learners of English as a Second Language (ESL) to use digital photo cameras, digital video cameras, waterproof underwater HD cameras and GPS technologies to geo-locate, explore, observe, record, display and tell stories in English both in words, photos and short HD video clip sequences. Stories will be about the exploration of places like the National Marine Sanctuaries and other areas of the country and coasts where there are scientific observation and monitoring opportunities created and supported by NOAA partners.
In order to improve science, technology, mathematics, and engineering (STEM) learning, it is crucial to better understand the informal experiences that young children have that prepare them for formal science education. Young children are naturally curious about the world around them, and research in developmental psychology shows that families often support children in exploring and seeking explanations for scientific phenomena. It is less clear how to link children's natural curiosity and everyday parent-child interaction with more formal STEM learning. This collaborative project will team researchers from the University of California, Santa Cruz, the University of Texas, and Brown University with informal learning practitioners at the Children's Discovery Museum, The Thinkery, and the Providence Children's Museum in order to investigate how family interaction relates to children's causal learning, as well as how modifications to museum exhibit design and facilitation by museum staff influence families' styles of interaction and increase children's causal learning. This project is funded by the Research on Education and Learning (REAL) program which supports fundamental research by investigators from a range of disciplines in order to deepen what is known about STEM learning.
The project team will examine how ethnically and linguistically diverse samples of parents and children engage in collaborative scientific learning in three children's museums across the U.S. The research will combine observational studies of parent-child interaction in a real-world setting with experimental measures of children's causal learning. The investigators will examine how children explore and derive explanations for museum exhibits about mechanical gear function and fluid dynamics. In this way, the researchers will investigate the relation between styles of parent-child interaction and children's causal learning. The team will also investigate novel ways of presenting material within the exhibits to facilitate exploration and explanation. They will explore how signage, conversations with museum staff, parents' attitudes towards learning in museum settings, and parents' own prior knowledge about the exhibits can influence the parent-child interaction and subsequent causal learning. The project will advance the basic research goal of advancing what is known about what affects children's science content learning. It will also advance the practice-oriented goal of developing new strategies for the design of science museum exhibits and make recommendations for how parents can better talk to their children about scientific phenomena.
The Growing Beyond Earth Project (GBE) is a STEM education program designed to have middle and high school students conduct botany experiments, designed in partnership with NASA researchers at Kennedy Space Center, that support NASA research on growing plants in space. GBE was initiated by Fairchild Tropical Botanic Garden in collaboration with NASA's Exploration Research and Technology Programs and Miami-Dade County Public School District. Project goals are to: (1) improve STEM instruction in schools by providing authentic research experiments that have real world implications through curricular activities that meet STEM education needs, comprehensive teacher training, summer-long internships and the development of replicable training modules; (2) increase and sustain youth and public engagement in STEM related fields; (3) better serve groups historically underrepresented in STEM fields; and (4) support current and future NASA research by identifying and testing new plant varieties for future growth in space. During the 2016-17 academic year, 131 school classrooms participated in the program. To date, students have tested 91 varieties of edible plants and produced more than 100,000 data points that have been shared with the researchers at KSC.
The Cyberlearning and Future Learning Technologies Program funds efforts that will help envision the next generation of learning technologies and advance what we know about how people learn in technology-rich environments. Cyberlearning Exploration (EXP) Projects explore the viability of new kinds of learning technologies by designing and building new kinds of learning technologies and studying their possibilities for fostering learning and challenges to using them effectively. This project brings together two approaches to help K-12 students learn programming and computer science: open-ended learning environments, and computer-based learning analytics, to help create a setting where youth can get help and scaffolding tailored to what they know about programming without having to take tests or participate in rigid textbook exercises for the system to know what they know.
The project proposes to use techniques from educational data mining and learning analytics to process student data in the Alice programming environment. Building on the assessment design model of Evidence-Centered Design, student log data will be used to construct a model of individual students' computational thinking practices, aligned with emerging standards including NGSS and research on assessment of computational thinking. Initially, the system will be developed based on an existing corpus of pair-programming log data from approximately 600 students, triangulating with manually-coded performance assessments of programming through game design exercises. In the second phase of the work, curricula and professional development will be created to allow the system to be tested with underrepresented girls at Stanford's CS summer workshops and with students from diverse high schools implementing the Exploring Computer Science curriculum. Direct observation and interviews will be used to improve the model. Research will address how learners enact computational thinking practices in building computational artifacts, what patters of behavior serve as evidence of learning CT practices, and how to better design constructionist programming environments so that personalized learner scaffolding can be provided. By aligning with a popular programming environment (Alice) and a widely-used computer science curriculum (Exploring Computer Science), the project can have broad impact on computer science education; software developed will be released under a BSD-style license so others can build on it.
DATE:
-
TEAM MEMBERS:
Shuchi GroverMarie BienkowskiJohn Stamper
Increasingly, the prosperity, innovation and security of individuals and communities depend on a big data literate society. Yet conspicuously absent from the big data revolution is the field of teaching and learning. The revolution in big data must match a complementary revolution in a new kind of literacy, through a significant infusion of STEM education with the kinds of skills that the revolution in 21st century data-driven science demands. This project represents a concerted effort to determine what it means to be a big data literate citizen, information worker, researcher, or policymaker; to identify the quality of learning resources and programs to improve big data literacy; and to chart a path forward that will bridge big data practice with big data learning, education and career readiness.
Through a process of inquiry research and capacity-building, New York Hall of Science will bring together experts from member institutions of the Northeast Big Data Innovation Hub to galvanize big data communities of practice around education, identify and articulate the nature and quality of extant big data education resources and draft a set of big data literacy principles. The results of this planning process will be a planning document for a Big Data Literacy Spoke that will form an initiative to develop frameworks, strategies and scope and sequence to advance lifelong big data literacy for grades P-20 and across learning settings; and devise, implement, and evaluate programs, curricula and interventions to improve big data literacy for all. The planning document will articulate the findings of the inquiry research and evaluation to provide a practical tool to inform and cultivate other initiatives in data literacy both within the Northeast Big Data Innovation Hub and beyond.
During the school year of 2016-2017, Fairchild Tropical Botanic Garden (Fairchild) implemented the first year of a four-year project entitled: Growing Beyond Earth (GBE). NASA is providing funding support for project implementation as well as an external project evaluation.
The evaluation activities conducted this year were focused on understanding project implementation and exploring project outcomes using data collected between September 2016 and May 2017. This report’s findings and accompanying recommendations inform next year’s project implementation and evaluation activities.
DATE:
TEAM MEMBERS:
Catherine RaymondAmy RubinsonCarl LewisMarion LitzingerAmy Padolf