Children’s and parents’ spatial language use (e.g., talk about shapes, sizes and locations) supports children’s spatial skill development. Families use spatial language during playful construction activities. Spatial language use varies with construction activity design characteristics, such as the activity’s play goals. What is the connection between the building materials used and the spatial conversations families have during a construction activity?
DATE:
TEAM MEMBERS:
Evan VlahandreasClaire MasonNaomi PolinskyDavid UttalCatherine Haden
The Academy of Natural Sciences of Drexel University will integrate unaccredited, home-based preschool care providers and the low-income families they serve into Philadelphia's initiative to increase the number of preschool education facilities and make high-quality pre-K instruction available to all children (Universal Pre-K). The project outputs include: an interdisciplinary pre-K curriculum that fosters knowledge and skill building in science, math, and literacy as well as positive social-emotional development; professional development workshops and one-on-one training with museum educators for childcare staff, followed by networking and alliance-building; and seven free Celebrate Pre-K Learning Days at the museum for families to learn about the importance of school readiness in science, math, and literacy and practice using free family learning kits that support these skills. The new citywide partnership, managed by the museum, is called Science and Literacy for Success and is supported by a robust number of partnerships with local social service and education agencies.
The Hands On Children's Museum will build on two of its most distinctive features-an Outdoor Discovery Center and a Young Makers program-to create a Nature Makers program. The interdisciplinary project will link nature-based learning with maker activities that use natural materials. Partnerships with Native American tribes, scientists, maker groups, and others will enrich the staff-led offerings. Nature Makers addresses two of the most significant needs in early learning-inspiring early STEM education and connecting children with the outdoors. Nature Makers will increase children's exposure to outdoor tinkering to build the foundation for STEM success in school; educate parents, caregivers, and teachers about the important role outdoor exploration plays in STEM achievement; and stimulate children's curiosity about the natural world and increase the time they spend outside. Evaluation findings will be shared internally to inform continuous improvement of program offerings, and externally to serve as a model for outdoor making activities.
A practical guide containing descriptions of 11 Tinkering activities for adult learners. It can be used by community development and informal learning practitioners working with adult groups. Some of the activities were newly developed while others were adjusted from already existing and tested activities. Special focus is given to activities suitable for adults from different backgrounds, taking into account different needs, interests and motivations. This publication is a product of Tinkering EU: Addressing the Adults, funded with support from the Erasmus+ Programme of the European Union.
The Garfield Park Conservatory will launch a new initiative to expand and improve its offerings for local students and teachers with a focus on meeting the needs of Title I schools and under-served schools on Chicago's West Side. The new Student Engagement and Educational Development (SEED) program is designed to enhance the quality of fieldtrip experiences for PreK-8 students visiting the conservatory; support teachers in planning and connecting their conservatory fieldtrips to their classroom studies; align fieldtrip content to Next Generation Science Standards; provide increased access to STEM-based fieldtrips for the city's Title I schools; and connect under-resourced schools on Chicago's West Side more deeply to the conservatory. This program will build the organization's capacity to serve more students and teachers each year, and make the conservatory more appealing to teachers, more engaging for students, and easier to access for low-income schools that struggle to provide their students fieldtrip experiences.
The Clubhouse Network: A Global Community for Creativity and Achievement, a program of Boston's Museum of Science, will develop, pilot, and evaluate Light it Up! Engaging Young People in Digital Making Activities. Digital making activities combine design, computational thinking, and engineering practices that are all fundamental learning skills for the 21st century. Over the course of six months, the project team will develop a one-day, hands-on workshop that will give museum educators strategies to inspire a more diverse population of middle and high school-aged youth to consider educational and career pathways in STEM fields through engagement with local science centers. The workshop will be implemented twice with a group of 12 educators from regional museums. The museum will use tested evaluation tools to improve the quality and outcomes of the workshops. A successful prototype and evaluation will result in practices that can be adapted by other museums and cultural institutions to better reach young people with digital making activities.
The Children's Museum at La Habra's Lil' Innovators Early Childhood STEM project will increase STEM skill and engagement among early childhood preschool teachers, disadvantaged preschoolers, and their parents. Delivered in partnership with three of La Habra's Head Start and California State Preschool program schools, the project will provide 224 preschoolers and 20 teachers with a year-long program offering increased developmental skills in STEM for underserved, low-income Hispanic students who are primarily English Language Learners. Teacher outcomes will include improved strategies for teaching STEM and increased teaching quality of STEM subjects. Parent outcomes include increased belief in the importance of STEM and increased ability to support their child's STEM learning. The standards-based education project will improve the museum's ability to serve its public by creating a community of practice consisting of a network of administrators, educators, and evaluators who will work together to improve the quality of STEM education for the youngest learners in this academically-challenged community.
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. Digital storytelling, in which narratives and reflections are combined with photos and videos in order to be shared with an audience, has become a familiar, enjoyable activity for many children (Robin, 2008). We examine whether digital storytelling activities during tinkering and reflection will be related to
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. We examine whether digital storytelling activities during tinkering and reflection will be related to more engineering talk.We also explore whether children with previous digital storytelling experience will produce higher quality narratives than children without.
Researchers and practitioners have identified numerous outcomes of place-based environmental action (PBEA) programs at both individual and community levels (e.g., promoting positive youth development, fostering science identity, building social capital, and contributing to environmental quality improvement). In many cases, the primary audience of PBEA programs are youth, with less attention given to lifelong learners or intergenerational (e.g., youth and adult) partnerships. However, there is a need for PBEA programs for lifelong learners as local conservation decisions in the United States
This report shares the results of a year-long study of the impact of IMLS grants (1998-2003) though programs that served youth aged 9-19. Nearly 400 museum and library programs were surveyed about their goals, strategies, content, audience, and structure, as well as about their impact, effectiveness, and outcomes.