The Bay Area Discovery Museum will address the need for STEM education by delivering engineering outreach programming to schools and libraries throughout the San Francisco Bay Area. The museum's mobile engineering lab, Try It Truck, will introduce the engineering design process to students and teachers in grades K-5 with hands-on activities (both on and off the truck) where they can collaborate, experiment, and design solutions to engineering challenges. The Try It Truck will serve 21,600 children, parents, and educators throughout the Bay Area, with at least 50 percent of all participants coming from underserved communities and Title I schools. The museum will work with an external evaluator to design survey instruments for both formative and summative evaluation, analyze summative evaluation data, and produce a report. Museum staff will share project results with colleagues at national and statewide conferences.
In partnership with early childhood service providers and elementary school systems, the Children's Museum of the Lowcountry will expand the reach of its programming to share its hands-on, play-based approach to STEM education with targeted children and educators. The museum will create a Power of Play curriculum with lesson plans that reflect best practices and focus on play-based activities to teach STEM concepts tied to grade level and state standards. The museum will train and support 40 teachers and educators from ten Head Start/First Steps early childhood centers and ten Title I elementary schools, and provide them with free Pop Up Tinker Shop (a museum on wheels) outreach visits. The trainings will build teacher confidence, promote best practices for play-based learning, support a community of practice, and enhance young learners' engagement, fascination, and attitude towards STEM. The Power of Play Curriculum will be published as a bound resource and shared with other children's museums and service providers.
The National Federation of the Blind (NFB), in partnership with scholars from Utah State University and educators from the Science Museum of Minnesota (SMM), has developed the Spatial Ability and Blind Engineering Research (SABER) project to assess and improve the spatial ability of blind teens in order to broaden their participation in STEM fields. The goals of the project include: 1. Develop and investigate the reliability of a tactile instrument to test blind and low vision youths’ spatial ability levels. 2. Contribute to the knowledge base of effective practices regarding informal STEM
DATE:
TEAM MEMBERS:
Gary TimkoTheresa GreenDaniel KaneWade GoodridgeLaura Weiss
The Da Vinci Science Center will expand its Women in Science and Engineering Network by partnering with community organizations, colleges, and universities to enhance the STEM learning and support ecosystem for women and girls in the Lehigh Valley and surrounding communities in eastern Pennsylvania. The museum will assess the needs of K-12 girls, undergraduate women, and women in STEM employment, and map opportunities for cross-sector collaborations to support them. The project team will identify marketing and recruitment messages that encourage STEM-interested girls and women to participate in programs and follow developmental pathways within a STEM learning ecosystem. Based on identified needs and messages, the museum will pilot and evaluate new STEM programs for girls and women, and train educators and mentors to sustain this work.
Children’s and parents’ spatial language use (e.g., talk about shapes, sizes and locations) supports children’s spatial skill development. Families use spatial language during playful construction activities. Spatial language use varies with construction activity design characteristics, such as the activity’s play goals. What is the connection between the building materials used and the spatial conversations families have during a construction activity?
DATE:
TEAM MEMBERS:
Evan VlahandreasClaire MasonNaomi PolinskyDavid UttalCatherine Haden
The Hands On Children's Museum will build on two of its most distinctive features-an Outdoor Discovery Center and a Young Makers program-to create a Nature Makers program. The interdisciplinary project will link nature-based learning with maker activities that use natural materials. Partnerships with Native American tribes, scientists, maker groups, and others will enrich the staff-led offerings. Nature Makers addresses two of the most significant needs in early learning-inspiring early STEM education and connecting children with the outdoors. Nature Makers will increase children's exposure to outdoor tinkering to build the foundation for STEM success in school; educate parents, caregivers, and teachers about the important role outdoor exploration plays in STEM achievement; and stimulate children's curiosity about the natural world and increase the time they spend outside. Evaluation findings will be shared internally to inform continuous improvement of program offerings, and externally to serve as a model for outdoor making activities.
A practical guide containing descriptions of 11 Tinkering activities for adult learners. It can be used by community development and informal learning practitioners working with adult groups. Some of the activities were newly developed while others were adjusted from already existing and tested activities. Special focus is given to activities suitable for adults from different backgrounds, taking into account different needs, interests and motivations. This publication is a product of Tinkering EU: Addressing the Adults, funded with support from the Erasmus+ Programme of the European Union.
The Children's Museum at La Habra's Lil' Innovators Early Childhood STEM project will increase STEM skill and engagement among early childhood preschool teachers, disadvantaged preschoolers, and their parents. Delivered in partnership with three of La Habra's Head Start and California State Preschool program schools, the project will provide 224 preschoolers and 20 teachers with a year-long program offering increased developmental skills in STEM for underserved, low-income Hispanic students who are primarily English Language Learners. Teacher outcomes will include improved strategies for teaching STEM and increased teaching quality of STEM subjects. Parent outcomes include increased belief in the importance of STEM and increased ability to support their child's STEM learning. The standards-based education project will improve the museum's ability to serve its public by creating a community of practice consisting of a network of administrators, educators, and evaluators who will work together to improve the quality of STEM education for the youngest learners in this academically-challenged community.
Hands-on tinkering experiences can help promote more equitable STEM learning opportunities for children from diverse backgrounds (Bevan, 2017; Vossoughi & Bevan, 2014). Latine heritage families naturally engage in and talk about engineering practices during and after tinkering in a children’s museum (Acosta & Haden, in press). We asked how the everyday practice of oral stories and storytelling could be leveraged during an athome tinkering activity to support children’s informal engineering and spatial learning.
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. Digital storytelling, in which narratives and reflections are combined with photos and videos in order to be shared with an audience, has become a familiar, enjoyable activity for many children (Robin, 2008). We examine whether digital storytelling activities during tinkering and reflection will be related to
Informal educational activities, such as tinkering, can be beneficial for children’s engineering learning (Bevan, 2017; Sobel & Jipson, 2016). Storytelling can help children organize and make meaning of their experiences (Brown et al., 2014; Bruner, 1996), thereby supporting learning. We examine whether digital storytelling activities during tinkering and reflection will be related to more engineering talk.We also explore whether children with previous digital storytelling experience will produce higher quality narratives than children without.
Making as a term has gained attention in the educational field. It signals many different meanings to many different groups, yet is not clearly defined. This project’s researchers refer to making as a term that bears social and cultural impact but with a broader more sociocultural association than definitions that center making in STEM learning. Using the theoretical lenses of critical relationality and embodiment, our research team position curriculum as a set of locally situated activities that are culturally, linguistically, socially, and politically influenced. We argue that curriculum
DATE:
TEAM MEMBERS:
Veronica OguilveWen WenEm BowenYousra AbourehabAmanda BermudezElizabeth GaxiolaJill Castek