The Ice Worlds media project will inspire millions of children and adults to gain new knowledge about polar environments, the planet’s climate, and humanity’s place within Earth’s complex systems—supporting an informed, STEM literate citizenry. Featuring the NSF-funded THOR expedition to Thwaites glacier, along with contributions of many NSF-supported researchers worldwide, Ice Worlds will share the importance of investments in STEM with audiences in giant screen theaters, on television, online, and in other informal settings. Primary project deliverables include a giant screen film, a filmmaking workshop for Native American middle school students that will result in a documentary, a climate storytelling professional development program for informal educators, and a knowledge-building summative evaluation. The project’s largest target audience is middle school learners (ages 11-14); specific activities are designed for Native American youth and informal science practitioners. Innovative outreach will engage youth underserved in science inspiring a new generation of scientists and investigative thinkers. The project’s professional development programs will build the capacity of informal educators to engage communities and communicate science. The Ice Worlds project is a collaboration among media producers Giant Screen Films, Natural History New Zealand, PBS, and Academy Award nominated film directors (Yes/No Productions). Additional collaborators include Northwestern University, The American Indian Science and Engineering Society, the Native American Journalism Association, a group of museum and science center partners, and a team of advisors including scientific and Indigenous experts associated with the NSF-funded Study of Environmental Arctic Change initiative.
The goals of the project are: 1) to increase public understanding of the processes and consequences of environmental change in polar ecosystems, 2) to explore the effectiveness of the giant screen format to impart knowledge, inspire motivation and caring for nature, 3) to improve middle schoolers’ interest, confidence and engagement in STEM topics and pursuits—broadly and through a specific program for Native American youth, and 4) to build informal educators’ capacity to share stories of climate change in their communities. The main evaluation questions are 1) to what extent does the Ice World film affect learning, engagement, and motivation around STEM pursuits and environmental problem solving 2) what is the added value of companion media for youth’s giant screen learning over short and longer term, and 3) what are the impacts of the culturally based Native American youth workshops.
The evaluation work will involve a Native American youth advisory panel and a panel of science center practitioners in the giant screen film’s development and evaluation process. Formative evaluation of the film will involve recruiting youth from diverse backgrounds, including representation of Native youth, to see the film in the giant screen theater of a partner site. Post viewing surveys and group discussions will explore their experience of the film with respect to engagement, learning, evoking spatial presence, and motivational impact. A summative evaluation of the completed film will assess its immediate and longer term impacts. Statistical analyses will be conducted on all quantitative data generated from the evaluation, including a comparison of pre and post knowledge scores. An evaluation of the Tribal Youth Media program will include a significant period of formative evaluation and community engagement to align activities to the needs and interests of participating students. Culturally appropriate measures, qualitative methods and frameworks will be used to assess the learning impacts. Data will be analyzed to determine learning impacts of the workshop on youth participants as well as mentors and other stakeholder participants. Evaluation of the community climate storytelling professional development component will include lessons learned and recommendations for implementation.
The Computational Thinking in Ecosystems (CT-E) project is funded by the STEM+Computing Partnership (STEM+C) program, which seeks to advance new approaches to, and evidence-based understanding of, the integration of computing in STEM teaching and learning. The project is a collaboration between the New York Hall of Science (NYSCI), Columbia University's Center for International Earth Science Information Network, and Design I/O. It will address the need for improved data, modeling and computational literacy in young people through development and testing of a portable, computer-based simulation of interactions that occur within ecosystems and between coupled natural and human systems; computational thinking skills are required to advance farther in the simulation. On a tablet computer at NYSCI, each participant will receive a set of virtual "cards" that require them to enter a computer command, routine or algorithm to control the behavior of animals within a simulated ecosystem. As participants explore the animals' simulated habitat, they will learn increasingly more complex strategies needed for the animal's survival, will use similar computational ideas and skills that ecologists use to model complex, dynamic ecological systems, and will respond to the effects of the ecosystem changes that they and other participants elicit through interaction with the simulated environment. Research on this approach to understanding interactions among species within biological systems through integration of computing has potential to advance knowledge. Researchers will study how simulations that are similar to popular collectable card game formats can improve computational thinking and better prepare STEM learners to take an interest in, and advance knowledge in, the field of environmental science as their academic and career aspirations evolve. The project will also design and develop a practical approach to programing complex models, and develop skills in communities of young people to exercise agency in learning about modeling and acting within complex systems; deepening learning in young people about how to work toward sustainable solutions, solve complex engineering problems and be better prepared to address the challenges of a complex, global society.
Computational Thinking in the Ecosystems (CT-E) will use a design-based study to prototype and test this novel, tablet-based collectable card game-like intervention to develop innovative practices in middle school science. Through this approach, some of the most significant challenges to teaching practice in the Next Generation Science Standards will be addressed, through infusing computational thinking into life science learning. CT-E will develop a tablet-based simulation representing six dynamic, interconnected ecosystems in which students control the behaviors of creatures to intervene in habitats to accomplish goals and respond to changes in the health of their habitat and the ecosystems of which they are a part. Behaviors of creatures in the simulation are controlled through the virtual collectable "cards", with each representing a computational process (such as sequences, loops, variables, conditionals and events). Gameplay involves individual players choosing a creature and habitat, formulating strategies and programming that creature with tactics in that habitat (such as finding food, digging in the ground, diverting water, or removing or planting vegetation) to navigate that habitat and survive. Habitats chosen by the participant are part of particular kinds of biomes (such as desert, rain forest, marshlands and plains) that have their own characteristic flora, fauna, and climate. Because the environments represent complex dynamic interconnected environmental models, participants are challenged to explore how these models work, and test hypotheses about how the environment will respond to their creature's interventions; but also to the creatures of other players, since multiple participants can collaborate or compete similar to commercially available collectable card games (e.g., Magic and Yu-Go-Oh!). NYSCI will conduct participatory design based research to determine impacts on structured and unstructured learning settings and whether it overcomes barriers to learning complex environmental science.
This report summarizes evaluative findings from Computational Thinking in Ecosystems project, and the resulting product, i.e., a functional draft of a game called “The Pack.” Evaluative efforts included gathering feedback from key stakeholders—including members of the design based research (DBR) team members at the New York Hall of Science (NYSCI) along with advisors and project partners— about the game and the DBR process, as well as an independent assessment of the game via feedback from educators and a round of play-testing with youth.
The Environmental Scientist-in-Residence Program will leverage NOAA s scientific assets and personnel by combining them with the creativity and educational knowledge of the pioneer hands-on science center. To do this, the program will embed NOAA scientists in a public education laboratory at the Exploratorium. Working closely with youth Explainers, exhibit developers, and Web and interactive media producers at the Exploratorium, NOAA scientists will share instruments, data, and their professional expertise with a variety of public audiences inside the museum and on the Web. At the same time the scientists will gain valuable skills in informal science communication and education. Through cutting-edge iPad displays, screen-based visualizations, data-enriched maps and sensor displays, and innovative interactions with visitors on the museum floor, this learning laboratory will enable NOAA scientists and Exploratorium staff to investigate new hands-on techniques for engaging the public in NOAA s environmental research and monitoring efforts.
Focusing on climate change and its impact on coastal zones and marine life, Visualizing Change will build educator capacity in the aquarium community and informal science education field. Building on NOAA datasets and visualizations, we will provide interpreters with strategic framing communication tools and training using the best available social and cognitive research so that they can become effective climate change educators. Objectives are to (1) Develop and test four exemplary interpretive "visual narratives" that integrate research-based strategic communication with NOAA data visualization resources; (2) Test the application of the visual narratives in a variety of geographic regions, institution types (aquarium, science center, etc.), and using multiple technology platforms (Science on a Sphere, Magic Planet portable globe display, iPad/tablets, and video walls); (3) Build a professional development program for climate change interpretation with data visualization; and (4) Leverage existing networks for dissemination and peer support.
C-RISE will create a replicable, customizable model for supporting citizen engagement with scientific data and reasoning to increase community resiliency under conditions of sea level rise and storm surge. Working with NOAA partners, we will design, pilot, and deliver interactive digital learning experiences that use the best available NOAA data and tools to engage participants in the interdependence of humans and the environment, the cycles of observation and experiment that advance science knowledge, and predicted changes for sea level and storm frequency. These scientific concepts and principles will be brought to human scale through real-world planning challenges developed with our city and government partners in Portland and South Portland, Maine. Over the course of the project, thousands of citizens from nearby neighborhoods and middle school students from across Maine’s sixteen counties, will engage with scientific data and forecasts specific to Portland Harbor—Maine’s largest seaport and the second largest oil port on the east coast. Interactive learning experiences for both audiences will be delivered through GMRI’s Cohen Center for Interactive Learning—a state-of-the-art exhibit space—in the context of facilitated conversations designed to emphasize how scientific reasoning is an essential tool for addressing real and pressing community and environmental issues. The learning experiences will also be available through a public web portal, giving all area residents access to the data and forecasts. The C-RISE web portal will be available to other coastal communities with guidance for loading locally relevant NOAA data into the learning experience. An accompanying guide will support community leaders and educators to embed the interactive learning experiences effectively into community conversations around resiliency. This project is aligned with NOAA’s Education Strategic Plan 2015-2035 by forwarding environmental literacy and using emerging technologies.
"Local Investigations of Natural Science (LIONS)" engages grade 5-8 students from University City schools, Missouri in structured out-of-school programs that provide depth and context for their regular classroom studies. The programs are led by district teachers. A balanced set of investigations engage students in environmental research, computer modeling, and advanced applications of mathematics. Throughout, the artificial boundary between classroom and community is bridged as students use the community for their studies and resources from local organizations are brought into school. Through these projects, students build interest and awareness of STEM-related career opportunities and the academic preparation needed for success.
DATE:
-
TEAM MEMBERS:
Robert CoulterEric KlopferJere Confrey
This project entails the creation of a coordinated colony of robotic bees, RoboBees. Research topics are split between the body, brain, and colony. Each of these research areas is drawn together by the challenges of recreating various functionalities of natural bees. One such example is pollination: Bees coordinate to interact with complex natural systems by using a diversity of sensors, a hierarchy of task delegation, unique communication, and an effective flapping-wing propulsion system. Pollination and other agricultural tasks will serve as challenge thrusts throughout the life of this project. Such tasks require expertise across a broad spectrum of scientific topics. The research team includes experts in biology, computer science, electrical and mechanical engineering, and materials science, assembled to address fundamental challenges in developing RoboBees. An integral part of this program is the development of a museum exhibit, in partnership with the Museum of Science, Boston, which will explore the life of a bee and the technologies required to create RoboBees.
DATE:
-
TEAM MEMBERS:
Robert WoodRadhika NagpalJ. Gregory MorrisettGu-Yeon WeiJoseph Ayers
This poster was presented at the 2014 AISL PI Meeting in Washington, DC. It describes a project that will expand the functions and applications of FieldScope, a web-based science information portal currently supported by the National Geographic Society (NGS). The goal is to create a single, powerful infrastructure for Public Participation in Science Research (PPSR) projects that any organization can use to create their own project and support their own community of participants.
DATE:
TEAM MEMBERS:
National Geographic SocietyMary Ford
This poster was presented at the 2014 AISL PI Meeting. It describes a project that uses location-based augmented reality games on smartphones to engage youth in activities developed by informal science institutions.
DATE:
TEAM MEMBERS:
Missouri Botanical GardenBob Coulter
Summer science programs held in university research facilities provide ideal opportunities for pre-college students to master new skills and renew, refresh, and enrich their interest in science. These types of programs have a positive impact on a student's understanding of the nature of science and scientific inquiry and can open a youngster's eyes to the many possible career opportunities in science. This paper describes a study of high school students enrolled in the Summer Science Academy program at the University of Rochester that investigates the program's impact on students' knowledge of
DATE:
TEAM MEMBERS:
Kerry KnoxJan MoynihanDina Markowitz
Laurel Clark Earth Camp was a set of interconnected programs for Middle and High School students and their teachers that help them develop new perspectives on global change. The project was a partnership of the Arizona-Sonora Desert Museum, Arizona Project WET at the University of Arizona, and the Planetary Science Institute in Tucson, Arizona. Project goals were to: I. Engage students in lifelong learning in STEM disciplines to inform their Earth stewardship practices, career decisions and capacity for innovation; II. Provide teachers with tools and experiences to inspire students to discover the real-world relevancy of STEM disciplines and apply this learning to the pursuit of STEM careers and technological innovation; III. Enhance public awareness of environmental change in the southwestern US and the importance of NASA satellites for recording, understanding and predicting these changes. Over four years, Earth Camp served 132 students and 42 teachers. Program participants understand more about Earth System connectivity and are more aware of their impacts on the environment and how to quantify and reduce these impacts. A post-camp online survey of alumni from previous years indicated that 75% of participants were felt that the camp influenced them to be more interested in STEM careers and 80% were more motivated to do well in their science classes. Teachers in the program were able to implement many of the project activities in their classrooms and most of them were exposed to satellite data for the first time; The project also created a public exhibit “Earth Change from Space” at the Arizona-Sonora Desert Museum, and an online tool that allowed students to explore, research and report on global change issues using Google Earth historical imagery.