The project is based upon the established Math, Science, and Beyond (MSB) program which consists of a series of evening family science workshops (with curriculum materials developed for classroom settings) in which students and parents explore science and mathematics together through exciting, hands-on activities. Units for each grade level (K-6) focus on physical, earth, and life science. The MSB informal science project will adapt materials and bring the program to informal learning settings - 25 Boys and Girls Clubs of California, and 25 California Department of Parks and Recreation sites. These clubs will receive training, materials, and support to operate Science Clubs (after school MSB sessions), Science Camps (summer, off-track and Spring/Winter Break, week-long MSB sessions), and Science Explorers Family Workshops (1-2 hour sessions for elementary school students and their parents). In addition to the Boys and Girls Clubs, and the California Department of Parks and Recreation, the California Science Implementation Network is a key collaborator on the project.
DATE:
-
TEAM MEMBERS:
Mary CavanaghEleanore TopolovacM. SusanJoseph Keating
This is a planning grant to Children's Television Workshop (CTW) to develop further the science content in a proposed television series for 8-12 year olds entitled, The Wheel In Space. This adventure series would be set on an orbiting space station 100 years in the future which, by definition is an enormous scientific and technological enterprise. The planning period would be used to investigate how its complex systems and operations can best be used to illustrate principles and processes science. Specific planning tasks include: Working with consultants in space science and other scientific disciplines as well as with organizations such as NASA and the National Air and Space Museum to explore the science and technology involved in the operation of a space station and to project what living, working, and growing up on a space station might be like a century from now; Writing a content "bible" that will serve as a technical guide to writers of the series; Writing a treatment of the series that outlines story premises that incorporate science topics; Investigating potential components of the project that may enhance the reach and impact of the television series; Examining the advantages and disadvantages of a co-production arrangement with Southern Star, a television production company in Australia interested in participating in the project. The PI's for the project will be Joel Schneider who will serve as Content Director and Jeffrey Nelson who will be Executive Producer. Both have worked on previous science and mathematics media projects at CTW. A principal consultant will be Samuel Gibbon, producer and/or executive producer for Sesame Street, The Electric Company, 3-2-1 Contact, and The Voyage of the Mimi.
The National Museum of Natural History is producing 3-D and 2-D versions of a large format film on natural history. With a working title of Wonders of Life, the film will explore the diversity of life on Earth and how this diversity came to be. It will examine the biological, geological, and cultural entities that interact in myriad ways to generate, shape, and sustain the enormous biological and cultural diversity of our planet. The film will be supported by outreach material designed to support further exploration of the topic of diversity in both informal and formal settings. An inexpensive family activity guide to be available at venues that show the film will feature engaging and challenging activities for families with children ages ten through 15. A teacher resource guide, distributed free to teachers attending the film with groups of students, will be developed for use in grades 5 through 8. A classroom activity poster will be developed to serve grades 2 through 5. A Wonders of Life home page will support in-depth study of the film's topics. Larry O'Reilly, Director of The Discovery Center Project at the NMNH, will be PI and Executive Producer for the film. The Senior Scientific Advisory Board will be chaired by Dr. Robert S. Hoffman, Senior Scientist and former Assistant Secretary for Science at the Smithsonian Institution. The board also includes Sir David Attenborough, Dr. Sylvia Earle, Dr. Margaret Geller, Ivan Hattingh, and Dr. Thomas Lovejoy. Dr. Kay Behrensmeyer, Curator of Paleobiology and former Associate Director for Science at the NMNH, will lead a core team of scientists who will be directly involved in production. The film will be produced by Christopher Parsons and David Douglas will be Director of Photography.
MY NASA DATA attempts to make NASA satellite data about the Earth available in a form that is accessible to the public through a standard web browser. For citizen scientists, the project has identified a number of science project ideas which tie local observations to the larger context and history available from satellite data. A mentor network is also available for relevant questions, and people with expertise are welcome to join it. We welcome reports of interesting projects carried out by citizen scientists using this resource.
Communicating Ocean Sciences to Informal Audiences (COSIA) is an innovative project that creates unique partnerships between informal science education institutions and local colleges conducting research in ocean sciences, with an emphasis on earth, biological and geochemical sciences. The project enables over 100 undergraduate and graduate students that are enrolled in the Communicating Ocean Sciences college course to create engaging learning activities and teaching kits in conjunction with their informal education partners. Institutional teams include: Long Beach Aquarium and California State University-Long Beach; Hatfield Marine Science Center and Oregon Sea Grant at Oregon State University; Virginia Aquarium and Science Center and Hampton University; Liberty Science Center and Rutgers University; and Lawrence Hall of Science and University of California-Berkeley. Students learn valuable outreach skills by providing visiting families and children with classes, guided tours and interactive learning experiences. Deliverables include a three-day partner workshop, a series of COSIA Handbooks (Collaboration Guide, Informal Education Guide and Outreach Guide), an Informal Science Education Activities Manual and Web Bank of hands-on activities. Strategic impact will be realized through the creation of partnerships between universities and informal science education institutions and capacity building that will occur as informal science institutions create networks to support the project. It is also anticipated the evaluation outcomes will inform the field abut the benefits of museum and university partnerships. The project will impact more than 30,000 elementary and middle school children and their families, as well as faculty, staff and students at the partnering institutions.
The Astronomical Society of the Pacific requests $1,317,701 over three years to implement its California pilot project to six sites around the country. Each site will establish local, self- sustaining coalitions linking science centers, astronomical institutions, school districts, and community groups. These coalitions will, with training and support from the national Project ASTRO staff, identify, link, and support the astronomer/teacher partners in their area to use the excitement of astronomy to improve the teaching and learning of science in elementary and middle school. A second strand of the project will use the Project ASTRO materials and techniques to train astronomers and teachers at national meetings outside the six sites to set up individual ASTRO partnerships on their own. Materials to be produced include a: Project ASTRO Coalition Manual; Training Manual; update to the Resource Notebook for the Teaching of Astronomy. Target audiences are students in grades 4-9.
This five-year project is designed to provide urban youth in grades 4-8 with innovative, hands-on science experiences in an after-school environment that will enhance their science competencies, while increasing the capacity of after-school leaders. In Years 1-3, nine science modules will be developed, field-tested and evaluated in collaboration with 12 after-school programs in Boston, Massachusetts, serving diverse populations of low-income youth. Each module includes a full color activity book, comprehensive facilitation guide and guidelines that enable students to share results of their investigations on the project website. Topics to be addressed include electricity, planets, invention and habitats. A comprehensive training program will include training for coaches who will provide assistance with the implementation of science modules and offer ongoing professional development for after-school providers. In Years 4-5, the project will be disseminated to after-school programs in Los Angeles, CA, Columbus, OH, and Philadelphia, PA. Additionally, the PI will partner with the National Institute on Out of School Time (NIOST) to disseminate the project nationally using the Cross-Cities Network. All materials will be printed in both English and Spanish, while the website will offer the option of downloading materials in a variety of other languages. It is anticipated this project will serve more than 3,000 youth and 400 after-school providers.
Design Technology in After School Programs is a collaboration between science centers and community-based programs to provide "hands on" activities for children age 6-10 in an informal setting. This project enables science centers and community-based organizations to use their expertise to conduct outreach for students and their parents using activities developed. The activities will consist of a variety of design projects that will challenge children to build working models of technological devices. The materials involved in the activities are common everyday items that are usually found around the home. The project will be scaled up each of the three years to reach six science centers and 25-30 after school programs in major areas of the eastern part of the United States. The PI will produce a manual for collaboration and a design technology guide for publication and national dissemination. The cost sharing for this project is 33% of the total project budget.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This education project is a time sensitive opportunity related to the March 9, 2016 Total Solar Eclipse occurring in a remote part of the world located in Waleia in the Federated States of Micronesia, a U.S. affiliated Pacific Island nation. The path of totality is only 100 miles wide and passes through only a few Pacific Island nations ending in Hawaii. This project uses this unique phenomenon to educate a large US and international audience about solar science using multi-platforms with integrated video, social media, and public programs. Project deliverables include the production of a broadcast of the eclipse live from Waleia in the Federated States of Micronesia on March 9, 2016 making it accessible to hundreds of countries and millions of people around the world via satellite and live streaming on the Internet. Additional deliverables include on-site educational programs at science centers and planetariums as well as media resources for long-term use. These resources will enhance the interest and preparedness for additional public engagement when the 2017 eclipse occurs in the U.S. Making new research understandable and accessible to the public is an important activity of the U.S. research enterprise. NSF is making a substantial investment in solar physics research by funding the construction of the world's largest solar telescope, the Daniel K. Inouye Solar Telescope which is slated to begin operations in late 2019 and operated by the National Solar Observatory. This new facility will revolutionize researchers' capability to study the Sun and its magnetic fields. This education project leverages that investment with a major public engagement opportunity that has the potential for reaching millions of students, teachers, and the public both in the U.S. and worldwide through the Internet.
DATE:
-
TEAM MEMBERS:
ExploratoriumRobert SemperNicole MinorRobyn Higdon
This Small Business Innovation Research (SBIR) Phase I project will demonstrate the feasibility of engaging children ages 8 to 13 in the wonders of science and the application of scientific principles through the transmedia SCIENTASTIC! project. The study will also demonstrate that the television series will help students answer questions and solve problems for themselves and their community. The American public supports the advancement of scientific knowledge and our investment in scientific research leads the world. However, Americans are falling behind in educating the next generation of scientists. Late elementary school is an ideal time to capture students' attention and engage them in STEM activities. Using rigorous evaluation techniques we will show that SCIENTASTIC! encourages hands-on learning by exploration, questioning and thinking. The innovative television program and integrated companion resources provide scientific role models and demonstrate the scientific process in an entertaining way. The associated web site, Apps, Web 2.0 repository and teaching aids allow students, teachers, and parents to further explore concepts introduced in the show. Preliminary analysis reveals that the SCIENTASTIC! target audience liked the show, would watch the show and learned from the show. Further analysis will demonstrate that the transmedia approach increases viewer interest and learning. The broader impact/commercial potential of this project will play a transformative role in encouraging students to take STEM courses in college, pursue scientific careers, and become a scientifically informed electorate. By developing the story beyond the story, transmedia SCIENTASTIC! has strong commercial value. Dissemination through public television allows for a potential audience of 250 million people. Commercial and noncommercial sponsorships will be sold with associated on-air credits. Additional direct funding will be sought from industries with interests in promoting science and health literacy. A commercial version of the program will be offered to cable networks on a licensing basis, with DVDs, Apps and study guides sold to schools, homeschoolers, and parents. With a broad and commercially viable dissemination, SCIENTASTIC! will show children the joys of science by demonstrating and engaging in hands-on, team- based learning in real-world contexts. This process will improve student retention and will show that SCIENTASTIC! introduces new ways to learn. The SCIENTASTIC! project will evaluate teaching techniques information that will be shared with policy-makers, educational institutions, and teachers to improve education nationwide. By spreading successful methods for engaging children in math and science, SCIENTASTIC! shoiuld have significant societal benefit creating a generation of scientifically educated decision-makers.
Nationally, there is tremendous interest in enhancing participation in science, technology, engineering, and mathematics (STEM). Providing rich opportunities for engagement in science and engineering practices may be key to developing a much larger cadre of young people who grow up interested in and pursue future STEM education and career options. One particularly powerful way to engage children in such exploration and playful experimentation may be through learning experiences that call for tinkering with real objects and tools to make and remake things. Tinkering is an important target for research and educational practice for at least two reasons: (1) tinkering experiences are frequently social, involving children interacting with educators and family members who can support STEM-relevant tinkering in various ways and (2) tinkering is more open-ended than many other kinds of building experiences (e.g., puzzles, making a model airplane), because it is the participants' own unique questions and objectives that guide the activity. Thus, tinkering provides a highly accessible point of entry into early STEM learning for children and families who do not all share the same backgrounds, circumstances, interests, and expertise. This Research-in-Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. The project will take place in the Tinkering Lab exhibit at Chicago Children's Museum. The research will investigate how reflective interactions between parents and children (ages 6-8) during tinkering activities ultimately impact child engagement in STEM. Design-based research (DBR) is well-suited to the iterative and contextually-rich process of tinkering. Using a DBR approach, researchers and museum facilitators will be trained to prompt variations of simple reflection strategies at different time points between family members as a way to strengthen children's engagement with, and memory of these shared tinkering events. Through progressive refinement, each cycle of testing will lead to new hypotheses that can be tested in the subsequent round of observations. The operationalization of study constructs and their measurement will come organically from families' activities in the Tinkering Lab and will be developed in consultation with members of the advisory board. Data collection strategies will include observation and interviews; a series of coding schemes will be used to make sense of the data. The research will result in theoretical and practical understanding of ways to enhance STEM engagement and learning by young children and their families through tinkering. A diverse group of at least 350 children and their families will be involved. The project will provide much needed empirical results on how to promote STEM engagement and learning in informal science education settings. It will yield useful information and resources for informal science learning practitioners, parents, and other educators who look to advance STEM learning opportunities for children. This research is being conducted through a partnership between researchers at Loyola University of Chicago and Northwestern University and museum staff and educators at the Chicago Children's Museum.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. In this project, Twin Cities Public Television (TPT) will produce Latina SciGirls, a fourth season of the Emmy Award-winning television and transmedia project SciGirls. Latina SciGirls includes six half-hour television episodes of SciGirls filmed in Spanish, showing groups of Hispanic girls and their Latina STEM (Science, Technology, Engineering, Mathematics) mentors investigating culturally relevant science and engineering problems of interest to Hispanic communities across the U.S. Television mentors and girls will be filmed in Hispanic communities in the southwest and southeastern U.S. and represent various cultural backgrounds and ethnicities. TPT will also create a series of family and girl-friendly online role model video profiles in Spanish and English of Latina STEM professionals. In addition to the media components, the project will provide opportunities to connect girls and their families with in-person Latina role models and STEM programming via community outreach in diverse Hispanic communities across the country. The goal of the project is to promote positive STEM identity development in middle school-age Hispanic girls. Hispanic women are the largest group of minority females, constituting 8% of the U.S. population, however, the participation of Hispanic women in science and engineering is significantly low: in 2010, just 2% of all of the scientists and engineers in the U.S. workforce were Hispanic women. The approach to Latina SciGirls is rooted both in research-based strategies proven to engage girls in STEM, and the need to address specific barriers that prevent many Hispanic girls from participating fully in STEM activities. These barriers include lack of STEM identity (girls' perception of themselves as scientists or engineers), limited exposure to STEM role models, and low parental engagement and English proficiency. Research shows that Hispanic girls have high interest and confidence in STEM, and a strong work ethic, but lack support and exposure to STEM professionals. TPT will uniquely leverage the power of national media and outreach to enable Latina STEM professionals to interact with girls and their families both onscreen and in person. Latina SciGirls episodes will be broadcast nationally by PBS and the nation's largest Hispanic network, Univisión, and streamed online at PBSKids.org. Resources will be made available to additional Spanish-speaking communities nationwide through the NSF-funded outreach program, SciGirls CONNECT, and through partnership with the National Girls Collaborative Project. TPT will commission an external research study with the University of Colorado-Boulder, which will test the hypothesis: The SciGirls model, when augmented to address specific barriers to STEM engagement of Hispanic girls ages 8 to 13 and their parents, will promote the development of positive STEM-related identities in Hispanic girls. In this capacity, the study will investigate Hispanic girls' personal experiences engaging with the project deliverables and how those experiences contribute to their STEM-related identity development against cultural and gender-based stereotypes. An external evaluation by Knight-Williams, Inc. will include front-end, formative and summative phases. The front-end evaluation will involve stakeholders in the development of a Spanish language program that features culturally appropriate storylines and showcases Latina STEM professionals. Formative evaluation will include focus groups of girls and families offering their reactions to the appeal and perceived value of the program. Summative evaluation will capture the reach of the broadcast, online components and community events. TPT will disseminate the research and evaluation findings through presentations at national conferences, including the American Education Research Association, National Science Teachers Association, and at www.InformalScience.org. The project's evaluation and research about the complexities of the cognitive and experiential factors that influence Hispanic girls' STEM identity development will contribute to the field's understanding of this subject and the larger efforts of broadening minority women's participation in STEM.