Skip to main content

Community Repository Search Results

resource project Media and Technology
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong.

The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong.

STEM educators are eager to foster long term collaboration with each other, and with schools. At the same time, good working practice by schools, teachers, STEM educators and institutions that involves and engages local communities was discovered, showing the diversified modes of connection which could enhance the sustainability of STEM ecosystem.

We trust that this three-year study with its associated digital maps, provides a useful resource for schools, teachers, students, parents, STEM educators and education policy makers in Hong Kong.
DATE: -
TEAM MEMBERS: Siu Po Lee David Foster
resource research Public Programs
The goal of our research is to identify strengths and weaknesses of high school level science fair and improvements that might enhance learning outcomes based on empirical assessment of student experiences. We use the web-based data collection program REDCap to implement anonymous and voluntary surveys about science fair experiences with two independent groups -- high school students who recently competed in the Dallas Regional Science and Engineering Fair and post high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) on STEM education
DATE:
TEAM MEMBERS: Frederick Grinnell Simon Dalley Karen Shepherd Joan Reisch
resource research Public Programs
Research misconduct has become an important matter of concern in the scientific community. The extent to which such behavior occurs early in science education has received little attention. In the current study, using the web-based data collection program REDCap, we obtained responses to an anonymous and voluntary survey about science fair from 65 high school students who recently competed in the Dallas Regional Science and Engineering Fair and from 237 STEM-track, post-high school students (undergraduates, 1st year medical students, and 1st year biomedical graduate students) doing research at
DATE:
TEAM MEMBERS: Frederick Grinnell Simon Dalley Karen Shepherd Joan Reisch
resource research Media and Technology
In 2018, the Croucher Foundation conducted its third annual mapping exercise for the out-of-school STEM learning ecosystem in Hong Kong. The study reveals a rich and vibrant ecosystem for out-of-school STEM in Hong Kong with over 3,000 discrete activities covering a very wide range of science disciplines. This third report indicates extremely rapid growth in available out-of-school STEM activities compared to 2016 and an even larger increase in the number of organisations offering out-of-school STEM activities in Hong Kong. STEM educators are eager to foster long term collaboration with
DATE:
TEAM MEMBERS: Siu Po Lee David Foster The Croucher Foundation
resource project Public Programs
This project will examine the characteristics and outcomes of a large sample of environmental education field trip programs for youth to elucidate program characteristics that most powerfully influence 21st century learning outcomes. Environmental education programs for youth, particularly day-long school trip programs, are popular and reside at the intersection of formal and informal STEM education. Such field trips provide opportunities for diverse audiences to participate in shared learning experiences, but current understanding of what leads to success in these programs is limited. This large-scale study will address this gap in knowledge by investigating the linkages between program characteristics and participant outcomes for at least 800 single-day environmental education field trip programs for youth in grades 5-8, particularly programs for diverse and underserved audiences. This study will result in the identification of evidence-based practices that will inform future program design for a wide variety of settings, including nature centers, national parks, zoos, museums, aquaria, and other locations providing informal environmental education programs.

This Research in Service to Practice study is guided by two research questions: 1) What program characteristics (context, design, and delivery) most powerfully influence learner self-determination and learner outcomes? And 2) Do the most influential program characteristics differ across diverse and underserved audiences (e.g. African American, Hispanic/Latino, economically disadvantaged) and contexts (e.g. rural versus urban)? This project will examine a wide range of program-related factors, including pedagogical approaches and contextual characteristics. A valid and reliable protocol for observing 78 program characteristics hypothesized to influence learner outcomes developed by a previous project will be used to systematically sample and observe 500 single-day environmental education field trip programs for youth in grades 5-8 distributed across at least 40 U.S. states and territories. Programs for diverse and underserved youth will be emphasized, and a diverse set of programs in terms of program type and context will be sought. Data from this sample will be combined with those of an existing sample of 334 programs provided by over 90 providers. The final combined sample of over 800 programs will provide sufficient statistical power to confidently identify which program components are most consistently linked with learning outcomes. This sample size will also enable stratification of the sample for examination of these relationships within relevant subpopulations. Principal component analyses will be used to reduce data in theoretically meaningful and statistically valid ways, and multilevel structural equation modeling will be employed to examine the influences of both participants' individual characteristics and program and context characteristics on participant outcomes. Since one research question focuses on whether program outcomes are the same across different audiences, the project will include at least 200 programs for each of three specific audiences to ensure sufficient statistical power for confidence in the results: primarily African American, primarily Hispanic/Latino, and primarily White.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Robert Powell Marc Stern Brandon Frensley
resource project Professional Development, Conferences, and Networks
STEAM, the use of art as a context and tool for science education, is currently a hot topic in the science education field. In almost all instances of study and practice, it involves the use of science-themed or science-informed art in science education. As such, it does not take advantage of the majority of artistic output that does not have an obvious connection to science. The National Academies of Sciences, Engineering and Medicine recently called for more research to expand the "limited but promising" evidence that integrating arts and humanities with science education leads to better learning. The goal of this 2.5-day conference is to bring together representatives of both art and science groups to have a shared discussion around how non-scientific art can influence science education in theory, and how we can apply empirical results to the theory. For purposes of this conference, "non-science art" is defined as art that was not inspired by science. Conference attendees will include researchers (art and science education researchers) and practitioners (artists, art museum interpreters, and science educators). The conference will take place during the 2020 Black Creativity exhibition at the Museum of Science and Industry, Chicago. It is anticipated that by holding the conference at that time the audience for the conference and its impact will be informed by more diverse attendance.

The conference will be implemented starting with a pre-conference reading. Attendees will be sent a copy of the white paper from the Art as a Way of Knowing report for background reading and also asked to contribute to a Google Document that describes their various contexts. Each day of the conference will focus on a theme -- state of the field and possibilities and research -- and be comprised of large and small group interactions. Attendees will be invited from the ranks of practitioners, researchers and educators in the art and science education fields; several slots will be available for open (non-invited) participants. Key outcomes include: (a) a summary of all the research that has been conducted on using non-science art in science education, (b) starting points for building a theory on why non-science art can be used in science education; and (c) a list of specific research topics that would help inform, advance, and test the theory. In addition to assessing satisfaction with the conference, evaluation will also include a one-year post conference survey to investigate impact of participation in the conference.

This conference will generate products that will give guidance to both researchers and practitioners who want to use art in science education. These products include a white paper synthesizing the discussion and appendices that include raw transcripts and a bibliography of resources. Another product is a roadmap to create interventions that can be studied, which should lead to a stronger, more rigorous theory of practice about how art can be integrated into science education.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Aaron Price Jana Greenslit Manuel Juarez
resource project Professional Development, Conferences, and Networks
The Teen Science Cafe Network is an adaptation for teens, of the popular adult science cafe model, which brings people together in a social setting to have an animated conversation with a scientist on some interesting and timely topic. Since its inception in 2012, the Network has grown at a rapid rate: it is now in 130 sites in 45 states, the District of Columbia, and British Columbia. Multiple evaluations have documented its impact. Teens are shown to have increased STEM literacy, a more realistic picture of scientists as real people leading interesting lives, and a better understanding of the nature of science. This two-and-a-half-day conference is designed to review the state of this model of teen engagement in science and science communication. Participants will examine lessons learned from this and similar networks to consider the features needed to expand this model to other audiences (e.g., rural teens, teenage college students, teenagers on military bases, and teens served by local chapters of professional societies based on ethnicity and gender).

Leaders of the Teen Science Cafe Network, along with an advisory committee comprised of individuals who are successfully managing networks, will explore these fundamental questions: 1) How can the field best take advantage of this large and growing network? 2) How can the current community of practice be leveraged for growth? 3) What are some of the most effective strategies for achieving and maintaining effective, long-term partnerships with organizations such as 4-H, science centers, networks of afterschool providers, science festivals, professional societies, and libraries? 4) What are possible outcomes for promoting discipline-specific cafes in areas such as ocean science, astrophysics, geoscience, and polar science? Outputs from the conference include a refined set of guiding principles for the current network and a white paper describing the features of strong and effective networks and recommendations for scaling.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Michelle Hall Janice Mokros Michael Mayhew
resource project Media and Technology
This project will research and develop the Circuit, a mobile phone and web-based application that will empower families and the general public to discover the broad spectrum of informal Science, Technology, Engineering and Mathematics (STEM) opportunities that exist in most communities. These informal STEM resources include science and children's museums, science and computer camps, maker spaces, afterschool programs, citizen science and much more. There is currently no "one-stop" searching for these resources. Instead, participants must conduct multiple, inefficient Internet searches to find the sought for STEM resources. The Circuit will enable users to efficiently search a rich informal STEM database, identifying resources by location, geography, age levels, science discipline, type of program and other factors. The Circuit builds on SciStarter, an existing online platform that connects thousands of prospective and active citizen scientists to citizen science projects. SciStarter has made possible the collection and organization of several thousand citizen science projects that would otherwise be scattered across the web. The Circuit will build on SciStarter's technical achievements in the citizen science sector, while systematically encompassing the offerings of established national networks. By integrating existing networks of informal STEM resources, the app will afford the public with unrivaled access to informal STEM opportunities, while collecting data that reveals patterns of engagement towards understanding factors of influence between different types of STEM experiences.

The app will provide researchers with new opportunities for researching how families and adults participate in the ecosystem of informal STEM resources in their communities. The Circuit will develop web tools to aggregate and organize digital content from trusted, currently siloed, informal STEM networks of content providers. These include science festivals, science and children's museums, the American Association for the Advancement of Science (AAAS), and Discover Magazine (3 million readers), the largest general interest science publication. Each content partner will feed the app with information directly or through their membership and encourage adoption of The Circuit within their respective communities. The project will design digital tools, including APIs (application program interfaces) to acquire and share digital content, embeddable tools to record and analyze data about movement, engagement, and persistence across domains, and social media tools and related APIs to distribute, track, and analyze content, engagement and demographics. (An API is a code that allows two software programs to communicate with each other.) The project will conduct small-scale, proof-of-conduct studies, to test the viability of the platform to support future, independent full-scale research. An analytics dashboard will be designed and tested with partners, researchers, and evaluators to ensure access to data on patterns of visits, clicks, referrals, searches, "joins," bookmarks, shares, contributions, user-locations, persistence, and more, within and across domains. Because each partner will feed their analytics into the shared dashboard, this will provide unprecedented and much-needed data to advance research in informal STEM learning. The Circuit will allow the tracking of patterns of engagement across networks and programs. Anonymized analytics of behavioral data from end users of The Circuit will support new approaches to advance evidence-based understanding of connected informal STEM learning by exhibiting engagement patterns across informal STEM domains. Through volunteer participation by the public, the Circuit will explore the geographic and demographic patterns of participants in the system, and derive important design lessons for its own and future efforts to create curated systems of connected learning across STEM education in informal settings.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Media and Technology
A large body of research highlights the benefits of storybooks for children's learning. In the context of preschool classrooms, the use of storybooks to engage young children in STEM is a frequent topic of practitioner-oriented articles. There is also an increasing number of informal STEM education (ISE) projects exploring how to leverage storybooks to engage young children and their families in different STEM content domains. While there is universal excitement for the potential of storybooks in ISE, there is an acknowledgment of a critical need for more cross-project sharing, more research, and more efforts to synthesize and share findings. This award will catalyze new research studies and partnerships to advance efforts in ISE contexts, including the role of books in the overall learning experience or program, how books are selected or designed, and how the reading is facilitated by teachers and families. Participants will be educators and researchers working with or studying family learning for preschool-age children (three to five years) using early childhood fiction books as a tool for engaging families in STEM topics and skills.

Storybook STEM will be implemented in four phases: (1) pre-convening activities to plan, synthesize existing resources, engage a broader group of educators and researchers beyond convening attendees, and prepare convening participants to maximize the value of the in-person discussions; (2) in-person convening to catalyze cross-project discussions, outline promising practices, and identify questions and ideas for the future; (3) evaluation of the impact and value of the convening, from the perspective of participants and a project steering committee; and (4) dissemination of findings and recommendations to educators and researchers within and beyond the ISE field. Outcomes include: (1) documenting current and past work in ISE and other fields; (2) summarizing key recommendations and resources from the reading, literacy, and early childhood development fields; and (3) outlining promising directions for future work.

The findings from this project will provide a critical resource to help broadening participation efforts be more effective and inclusive for audiences across the country. Research studies motivated by the convening will address the lack of empirical work on storybooks as a tool for ISE programs and advance the ISE field's knowledge of how to integrate these books effectively. Because storybooks are a highly accessible and almost universally used family learning resource, the topic of the convening will be relevant to a wide range of audiences and will help educators broaden access to ISE for traditionally underserved and under-resourced communities.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
resource project Public Programs
Increased exposure to STEM content and career pathways during out-of-school time contexts can significantly extend STEM learning and aspirational interests among middle and high school youth. Using a collective impact approach, the STEM CareerLaunch pilot project tests the feasibility of redesigning a widely used, national youth and career focused program for and by the National Boys & Girls Clubs of America to extend STEM learning and promote awareness, interest, and readiness for STEM-related occupations among youth. STEM CareerLaunch integrates extant STEM programs, such as First Robotics, Girls Who Code and Jason Learning, with newly developed STEM content and opportunities to create and test a comprehensive STEM learning and career program for youth. The results of this pilot will inform a more expansive effort to bring STEM CareerLaunch to an already networked 4,000 Boys & Girls Clubs, reaching over four million youth from predominately underrepresented groups in STEM, and youth participating in other afterschool/summer program throughout the United States.

Approximately 100 youth and informal educators in Boys & Girls Clubs in Fitchburg and Leominster, Massachusetts will participate in this pilot feasibility study. A five-pronged approach will be instituted including: (1) high quality out of school time STEM programming, (2) connected STEM career education, (3) mentorship, (4) professional development for the informal educators, and (5) incentives such as internships and field experiences for youth participants. The developmental evaluation will focus on program implementation, participant outcomes, and scale-up. Data collection methods will include quantitative and qualitative approaches such as baseline student data, project tracking logs, retrospective surveys, focus groups, staff interviews, and observations. A summative evaluation will also be conducted.

This endeavor is led by a collaborative partnership between the National Boys & Girls Clubs of America, Worcester Polytechnic Institute STEM Center, the Fitchburg and Leominster Public School Districts, and others. It is primarily funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. It is also co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program which is committed to better understanding and promoting practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, and or mathematics (STEM).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Donata Martin
resource project Media and Technology
This Research Advanced by Interdisciplinary Science and Engineering (RAISE) project is supported by the Division of Research on Learning in the Education and Human Resources Directorate and by the Division of Computing and Communication Foundations in the Computer and Information Science and Engineering Directorate. This interdisciplinary project integrates historical insights from geometric design principles used to craft classical stringed instruments during the Renaissance era with modern insights drawn from computer science principles. The project applies abstract mathematical concepts toward the making and designing of furniture, buildings, paintings, and instruments through a specific example: the making and designing of classical stringed instruments. The research can help instrument makers employ customized software to facilitate a comparison of historical designs that draws on both geometrical proofs and evidence from art history. The project's impacts include the potential to shift in fundamental ways not only how makers think about design and the process of making but also how computer scientists use foundational concepts from programming languages to inform the representation of physical objects. Furthermore, this project develops an alternate teaching method to help students understand mathematics in creative ways and offers specific guidance to current luthiers in areas such as designing the physical structure of a stringed instrument to improve acoustical effect.

The project develops a domain-specific functional programming language based on straight-edge and compass constructions and applies it in three complementary directions. The first direction develops software tools (compilers) to inform the construction of classical stringed instruments based on geometric design principles applied during the Renaissance era. The second direction develops an analytical and computational understanding of the art history of these instruments and explores extensions to other maker domains. The third direction uses this domain-specific language to design an educational software tool. The tool uses a calculative and constructive method to teach Euclidean geometry at the pre-college level and complements the traditional algebraic, proof-based teaching method. The representation of instrument forms by high-level programming abstractions also facilitates their manufacture, with particular focus on the arching of the front and back carved plates --- of considerable acoustic significance --- through the use of computer numerically controlled (CNC) methods. The project's novelties include the domain-specific language itself, which is a programmable form of synthetic geometry, largely without numbers; its application within the contemporary process of violin making and in other maker domains; its use as a foundation for a computational art history, providing analytical insights into the evolution of classical stringed instrument design and its related material culture; and as a constructional, computational approach to teaching geometry.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Harry Mairson
resource project Public Programs
Research on how museum staff are trained continues to emerge. Training varies considerably across institutions and typically includes observations, shadowing, and trial and error. While museum educators put high value on increasing visitor-centered participatory experiences, engagement based on acquisition-based theories of learning is still common among floor staff, even after training. Facilitating learning about science, technology, engineering, and mathematics (STEM) topics in ways that support visitors in constructing their own understanding is difficult, especially since floor staff/facilitators may be working simultaneously with children and adults of a range of ages, backgrounds, and goals. This project will advance understanding of how to facilitate open-ended learning experiences in ways that engage visitors in practices that align with the STEM disciplines. The project will result in an evidence-based facilitation framework and training modules for training informal science educators. The work is grounded in constructivist theories of learning and identity work and focuses on visitors constructing understanding of STEM topics through active engagement in the practices of STEM. This model also results in learning experiences in informal settings that are mutually reinforcing with the goals of schools. This research is being conducted through an established researcher-practitioner partnership between MOXI, the Wolf Museum of Exploration + Innovation and the University of California at Santa Barbara (UCSB).

The two primary goals of the work are to (1) enable visitors to better engage in STEM practices (practice-based learning) and (2) investigate the role of training in helping facilitators develop the practice-based facilitation strategies needed to support visitors' learning. STEM content in this study is physical science. Prior work resulted in two tools that constitute part of a facilitation framework (a practices-by-engagement matrix and three facilitation pathways) which help educators identify appropriate goals based on how the visitor is engaging with exhibits. The development of the final tool in the framework, facilitation strategies, and the refinement of the first two tools will be done using a design-based implementation research (DBIR) approach. Data collection and analysis will be directed and completed by research-practitioner teams of UCSB graduate students (researchers) and MOXI educators (practitioners); MOXI educators will be both participants and researchers. Data collection activities include: video data using point-of-view cameras worn by visitors and educators; interviews of educators and visitors; observations of the training program; and educator reflections. In the final year, a small field test will be done at six sites, representing different types of museums. Interviews and reflections comprise the data collection at the field sites.


This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Ron Skinner Danielle Harlow