In October 2017, the PBS NewsHour team produced a week and a half of opioid-related content, including several online explainers, which presented the opportunity for a natural experiment for the Experiments in Transmedia project.
Knology (formerly New Knowledge Organization Ltd.) conducted a two-wave research study to advance understanding of the youth audience’s knowledge and news consumption on the topic.
The first wave of the study, conducted in September 2017, provides a baseline. The content aired in October 2017, and the second wave of the study, conducted in November 2017, asked a
Cities are facing new demands as their urban populations rapidly grow. Smart City initiatives are being developed to address issues of mobility, infrastructure, security, and safety, while enhancing the quality of life of citizens. One-size-fits-all solutions are not viable. Instead, the diversity of a city's residents, including life experiences, cultural backgrounds, needs, and behaviors, must be taken into account to achieve transformative, citizen-centered solutions. Engineers, scientists, policy makers, entrepreneurs, and thought leaders must be prepared to tackle future Smart City challenges, and address knowledge barriers in understanding the needs of citizens across age, occupation, financial standing, disability, and technology savviness. This National Science Foundation Research Traineeship (NRT) award to the Arizona State University addresses this need by training the next generation of MS and PhD students for careers in Smart Cities-related fields. The project anticipates training thirty-eight (38) MS and PhD students, including twenty-four (24) funded trainees, from the following degree programs: Human and Social Dimensions of Science and Technology; Public Affairs; Computer Science; Civil, Environmental, and Sustainable Engineering; Mechanical & Aerospace Engineering; and Applied Engineering Programs. In addition to trainees, it is envisioned that over 300 other MS and PhD students in STEM disciplines will participate in opportunities made available through this traineeship. The knowledge and technologies developed from this project will contribute toward improving the quality of life for all of society through interdisciplinary, citizen-centered Smart City solutions.
An integrated education-research-practice model focused on the technological, societal, and environmental research aspects of citizen-centered solutions for Smart Cities will be employed to instill trainees with transdisciplinary skills and knowledge through cross-disciplinary courses; experience with leading collaborative, use-inspired research projects; applied learning through internships with partners and teaching opportunities; research experiences through service learning and leadership; and entrepreneurial education. Trainees will pursue research thrusts in Citizen-Centered Design; Smart City Infrastructure and Dynamics; and Socio-Environmental Practices and Policies. These thrusts are embedded in integrative priority application areas of Transportation and Accessibility; Safety, Security, and Risk Reduction; and Engagement and Education. Research efforts will significantly advance data-enabled citizen engagement; urban informatics; Internet-of-Things technologies; inclusion and accessibility; urban infrastructure; transportation systems; cybersecurity; swarm robotics; urban sustainability; quality of life and equity for citizens; hazards management and risk reduction; and societal concerns and ethics of emerging Smart City technologies. Focused efforts will be made to recruit underrepresented minorities, women, and individuals with disabilities, in order to tap underutilized talent, equip them to address the needs of their communities, and increase involvement of these groups in Smart Cities-related fields.
The NSF Research Traineeship (NRT) Program is designed to encourage the development and implementation of bold, new potentially transformative models for STEM graduate education training. The program is dedicated to effective training of STEM graduate students in high priority interdisciplinary research areas through comprehensive traineeship models that are innovative, evidence-based, and aligned with changing workforce and research needs.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE:
-
TEAM MEMBERS:
Michael KennedyRam PendyalaCynthia SelinAnn McKennaTroy McDanielGail-Joon AhnSethuraman Panchanathan
This document contains the following Appendices that provide information for the I/CaLL Community Science Learning study.
Appendix A: StreamLines Events
Appendix B: StreamLines Events Survey Instrument
Appendix C: Art + Science Brainstorm Coding Themes
Appendix D: Art + Science Brainstorm Flyer
I/CaLL is a four-year project that explores art as conduits for informal science learning on a citywide scale. The project attempts to transform the city of Indianapolis into an informal science-learning museum through the use of sculpture, dance, music, and poetry as educational tools in creating awareness and understanding of the city’s waterways. Specifically, I/CaLL addresses five sites located near and around waterways in impoverished or underserved communities, where art interventions created by artists in collaboration with scientists address topics around water sustainability
DATE:
TEAM MEMBERS:
John FraserNezam ArdalanChristina Shane-Simpson
This set of appendices represent all research instruments related to study presented in the I/CaLL Art Experiences and Advancing Science Literacy report (NewKnowledge Publication #NSF.097.115.07).
Appendix A: Installation Site Intercept Interview Instrument
Appendix B: Artists-Scientists Walk & Talks Instrument
Appendix C: Post-Performance Event Survey Instrument
Note that researchers did not use an instrument for the fourth aspect of the study, the post-performance event reflection sessions. Instead, they allowed the discussions to be directed by the reflection participants.
DATE:
TEAM MEMBERS:
John FraserRebecca Joy NorlanderSophie SwansonNezam ArdalanKate FlinnerJoanna Laursen BruckerNicole LaMarca
A mixed-methods series of surveys were used to explore public literacy related to environmental science and sustainability in Indianapolis. Surveys also explored predictive variables including environmental identity, nature affinity, use of nature places as learning opportunities, and motivations for visiting nature spaces. An online, citywide consumer survey was distributed alongside a parallel identical survey of employees at a major science-based corporation to assess variation in knowledge, attitudes, and learning behaviors. This science-based corporation provides substantial support to
DATE:
TEAM MEMBERS:
John FraserSu-Jen RobertsNezam Ardalan
This report describes the results from an exploratory study of how artists approached collaboration with earth scientists to foster the public’s science learning and engagement with a city’s waterways. Data from phone interviews, surveys, and reflection on the artwork produced for this collaboration were compared with observations of roundtable discussions with community-based artists and scientists grappling with these ideas in a dialogue format.
The researchers found that personal connections with the waterway sites and professional interest in and experience with art–science
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.
The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE:
-
TEAM MEMBERS:
Katie SpellmanElena SparrowChrista MulderDeb Jones
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative research, approaches and resources for use in a variety of settings. The project will conduct research designed to deepen our fundamental knowledge about culture, experience, and ecosystems cognition and to develop innovative practices and approaches to support learning about changing ecological systems and environmental decision making. Work on cultural differences in the production of complex systems knowledge is severely lacking. This gap in knowledge may contribute to the continued reproduction of inequities in science education. More broadly findings from this project will have clear implications for theories of cognitive development, especially those pertaining to how knowledge is shaped by culture and experience. Focusing on ecosystems may represent an opportunity to not only increase engagement and achievement in science among non-dominant communities and Native youth specifically, but also advance effective learning for all communities. The primary deliverables for the project are conference presentations and research publications. However, the project will also develop additional resources freely available to researchers, educators, and the general public. These will include summer curricular materials and teaching tools, professional development workshops, practitioner briefs about research findings that can be used in professional development workshops and shared share more broadly, and evaluation reports.
A deeper understanding of cultural influences on conceptions of the natural world can serve to advance the educational needs of children, including children from diverse linguistic and cultural backgrounds. Project research will include two interrelated series of studies designed to expand knowledge about human cognition of complex ecosystems and the affordances of informal STEM learning environments in developing and supporting the critical 21st century skill of ecological systems level reasoning. The first consists of a series of experiments focused on ecological cognition and the role of humans in nature. The second consists of design-based research interventions in informal settings, summer workshops for youth and the communities, focused on ecological systems level thinking and socio-environmental decision making. The project will recruit and engage both child and adult participants from two broad cultural communities, Native Americans and European Americans living in urban and suburban communities, in part because it affords a sharp test of human-nature relations. Sampling from two different urban communities will avoid simple Native-non-Native comparative binaries and to conduct Native-to-Native comparative analysis. Based on results from this, the project will result in: 1) foundational knowledge about human learning and reasoning and ecosystems and environmental decision making, 2) culturally responsive models of learning and practice about complex ecosystems for indoors and outdoors informal learning environments, and 3) insights about research-practice-community partnerships. One important objective of the research is to broaden participation and close opportunity gaps for under-represented groups in STEM fields broadly and more specifically for Indigenous people. Members of Indigenous communities, who provide strong role models for other aspiring scholars, will be involved as postdoctoral fellows, research assistants and graduate fellows.
The project will advance efforts by the American Association for the Advancement of Science and the Institute for Learning Innovation to bring together young adults from communities historically underrepresented in science, technology, engineering, and mathematics (STEM) to collaboratively conduct scientifically driven challenges embedded in a mobile learning tool based upon the AAAS Active Explorer platform. The project will be conducted at the Washington National Mall, San Francisco National Golden Gate Park, and the Boston Harbor Islands National Recreation Area, and will study how a mobile technology used in these settings can facilitate learner engagement in science content; how it can affect young adults' engagement in science-learning processes; and whether interest in learning science and technology has been furthered. The project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including pathways for broadening access to STEM learning experiences and advancing research STEM learning. Research questions will investigate science learning inequalities by addressing how place-based augmented reality games can connect young adults to scientific practices, including observing science phenomena, analyzing data, and communicating findings; how young adults develop science skills related to their science self-efficacy through participation in augmented reality science exploration; and how mobile technologies and gaming can serve as mediators that enable young adults to improve their science identity. In addition to engaging young adults in science activities at the National Parks and increasing their science skills, the project will provide valuable information to National Park staff and scientists to assist them in designing effective tools, resources and experiences to better engage young adults. Research teams will collect data in the form of digital ethnography, focus groups, activity reports, artifacts, and surveys. The project will document learning and engagement through mobile technology in three urban national parks that will involve 60 young adults at each location, and will create innovative measurement tools to monitor how informal settings can leverage the intersections of the arts and sciences to support student engagement and learning.
Public Participation in Scientific Research (PPSR), often referred to as crowdsourcing or citizen science, engages participants in authentic research, which both advances science discovery as well as increases the potential for participants' understanding and use of science in their lives and careers. This four year research project examines youth participation in PPSR projects that are facilitated by Natural History Museums (NHMs). NHMs, like PPSR, have a dual focus on scientific research and science, technology, engineering, and mathematics (STEM) education. The NHMs in this project have established in-person and online PPSR programs and have close ties with local urban community-based organizations. Together, these traits make NHMs appropriate informal learning settings to study how young people participate in PPSR and what they learn. This study focuses on three types of PPSR experiences: short-term outdoor events like bioblitzes, long-term outdoor environmental monitoring projects, and online PPSR projects such as crowdsourcing the ID of field observations. The findings of this study will be shared through PPSR networks as well as throughout the field in informal STEM learning in order to strength youth programming in STEM, such that youth are empowered to engage in STEM research and activities in their communities. This project is funded through Science Learning+, which is an international partnership between the National Science Foundation (NSF) and the Wellcome Trust with the UK Economic and Social Research Council. The goal of this joint funding effort is to make transformational steps toward improving the knowledge base and practices of informal STEM experiences. Within NSF, Science Learning+ is part of the Advancing Informal STEM Learning (AISL) program that seeks to enhance learning in informal environments and to broaden access to and engagement in STEM learning experiences.
The study employs observations, surveys, interviews, and learning analytics to explore three overarching questions about youth learning: 1) What is the nature of the learning environments and what activities do youth engage in when participating in NHM-led PPSR? 2) To what extent do youth develop three science learning outcomes, through participation in NHM-led citizen science programs? The three are: a) An understanding of the science content, b) identification of roles for themselves in the practice of science, and c) a sense of agency for taking actions using science? 3) What program features and settings in NHM-led PPSR foster these three science learning outcomes among youth? Based on studies occurring at multiple NHMs in the US and the UK, the broader impact of this study includes providing research-based recommendations for NHM practitioners that will help make PPSR projects and learning science more accessible and productive for youth. This project is collaboration between education researchers at University of California, Davis and Open University (UK), and Oxford University (UK) and citizen science practitioners, educators, and environmental scientists at three NHMs in the US and UK: NHM London, California Academy of Sciences, and NHM Los Angeles.
Because of the siloed nature of formal educational curricula, students who opt out of STEM coursework, for whatever reason, lose the opportunity to engage with the domain of science almost entirely, thereby closing the door to the STEM workforce pipeline. This disproportionately impacts students of color and women. This project advances an alliance that consists of a consortium of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and local businesses. The project built around this alliance will leverage interdisciplinary spaces in the curriculum, particularly the humanities and social sciences, across academic levels, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life. The PIs establish a physical Community STEM Center as an anchoring institution for STEM engagement. This Center will be situated within the community that the alliance serves, bringing STEM opportunities and engagement to students instead of asking them to come where STEM education is currently provided. The activities enacted through the Community STEM Center will focus on enduring problems experienced by the communities, where students, community residents, teachers, and experts from higher education, industry and other community-based entities can come together to work on understanding them and developing evidenced centered advocacy as a means for addressing them. To facilitate the work at the Community STEM Center, the project creates a Community Ambassadors Program (CAP), leveraging participation across alliance members in partnership with the community. This Design and Development Launch Pilot will cultivate the necessary knowledgebase to develop a scalable model for implementation across diverse urban communities.
Technical Summary
This Design and Development Launch Pilot focuses on shifting the narrative of STEM education away from a solitary focus on formalized educational experiences and targets STEM content. This project develops and facilitates a parallel set of activities designed to engage under-represented students in learning how and why STEM is relevant to their lives, and approached through new and non-traditional educational dimensions. The five main objectives of this proposed pilot are to: (1) Develop a pilot alliance of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and industry;(2)Establish a physical Community STEM Advocacy Center as an anchoring institution for change embedded within the community that the pilot alliance serves; (3) Leverage interdisciplinary spaces in curricula, across academic levels, particularly the humanities and social sciences, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life; (4) Create a Community Ambassadors Program (CAP), leveraging participation across higher education pilot alliance members in partnership with the community; and (5)Conduct an evaluation of project initiatives and research regarding the usability and feasibility of a systemic approach to developing community-based, interdisciplinary pathways to broaden STEM participation pathways. Efforts to examine the impact of this community-based, interdisciplinary approach concentrates on the proximal outcomes related to STEM interest, self-efficacy and identity. Data will be collected in pre/post format across our three constituent samples: 1) Community STEM Advocacy Center participants; 2) k-12 students; and, 3) postsecondary students. Analysis of data will be conducted through MANCOVAs to account for potential co-variation among construct scores. Qualitative data will also be collected to contextualize findings and enable the development of a rich case study. At least two observations will be conducted in the Community STEM Advocacy Center and the two classroom implementations to document engagement, participant interactions and level of STEM content.
DATE:
-
TEAM MEMBERS:
Kimberly LawlessDonald WinkLudwig Carlos NitscheAixa AlfonsoJeremiah Abiade