Skip to main content

Community Repository Search Results

resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.

The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE: -
TEAM MEMBERS: Joe Hastings Armelle Casau Obenshain Koren Kersti Tyson Angelo Gonzales
resource project Community Outreach Programs
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.

The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE: -
TEAM MEMBERS: Aristides Marcano Mohammed Khan Gulnihal Ozbay Gabriel Gwanmesia
resource project K-12 Programs
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.

This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE: -
TEAM MEMBERS: Anand Gramopadhye Derek Brown Eliza Gallagher Kristin Frady
resource project Games, Simulations, and Interactives
EMERGE in STEM (Education for Minorities to Effectively Raise Graduation and Employment in STEM) is a NSF INCLUDES Design and Development Launch Pilot. This project addresses the broadening participation challenge of increasing participation of women, the at-risk minority population, and the deaf in the STEM workforce. The project incorporates in and out-of-school career awareness activities for grades 4-12 in a high poverty community in Guilford County, North Carolina. EMERGE in STEM brings together a constellation of existing community partners from all three sectors (public, private, government) to leverage and expand mutually reinforcing STEM career awareness and workforce development activities in new ways by using a collective impact approach.

This project builds on a local network to infuse career exposure elements into the existing mutually reinforcing STEM activities and interventions in the community. A STEM education and career exposure software, Learning Blade, will be used to reach approximately 15,000 students. A shared measurement system and assessment process will contribute to the evaluation of the effectiveness of the collective impact strategies, the implementation of mutually reinforcing activities across the partnership and the extent to which project efforts attract students to consider STEM careers.
DATE: -
TEAM MEMBERS: Gregory Monty Margaret Kanipes Malcolm Schug Steven Jiang
resource project Resource Centers and Networks
In this NSF INCLUDES Design and Development Launch Pilot the institutions of "Building on Strengths" propose to build and pilot the infrastructure, induction process, and early implementation of the Mathematician Affiliates of Color network. This network will consist of mathematicians of color from across academia and industry who want to invest time in, share their expertise with, and learn from students of color and their teachers. Building on Strengths will draw on basic needs cognitive theory to support these interactions and will focus narrowly on short and moderate term collaborations (from one month to a semester) between visiting mathematicians, students, and collaborating teachers that will involve three specific types of interactions: doing mathematics together as a habits-of-mind practice, talking about the discipline of mathematics and the experiences of mathematicians of color in that discipline, and relationship-building activities. The foundational infrastructure developed in the project will include systems for recruitment, selection and induction, a process for pairing affiliate mathematicians with classrooms, and support structures for the collaborations. To support the goals of the network a prototype virtual space will be developed in which real-time artifacts can be collected and shared from the classroom interactions. While Building on Strengths will pilot this program in the secondary context, once a viable model is established, scaling to K-16, as well as to other STEM fields, will be possible.

The research study in the project uses an exploratory sequential mixed-methods design and will be conducted in two phases. In the first, quantitative, phase of the study the following questions will be addressed: (1) Is the teacher-mathematician collaboration associated with a change for students in perception of basic human needs being met, mathematical or racial identities, or beliefs about mathematics or who can do mathematics? (2) Is the teacher-mathematician collaboration associated with a change for adults in perceptions of the role of basic needs or in adults' identities or beliefs about mathematics or who can do mathematics? In the second, qualitative, phase of the study, two types of interactions will be selected for in-depth qualitative study, identifying cases where groups of students experienced changes in their needs, identity, and beliefs. In this qualitative case-centered phase, the following questions will be explored: (1) What is the nature of the mentor-student interaction? (2) What aspects of the intervention do students feel are most relevant to them? (3) How did the implementation of the intervention differ from the anticipated intervention? The results of the study will help improve the infrastructure for, and better support the interactions between, mathematicians of color, students of color and their mathematics teachers; the outcomes will also shed light on how students experience their interactions.
DATE: -
TEAM MEMBERS: Michael Young Maisha Moses Albert Cuoco Eden Badertscher
resource project Informal/Formal Connections
Many urban universities offer precollege STEM programs aimed at broadening participation in STEM. These programs are designed to increase students' scientific content knowledge and skills, promote STEM engagement, increase self-efficacy, and prepare underserved and underrepresented minority high school students for success in undergraduate programs. However, even after demonstrating significant knowledge gains and success in these programs, students are often unable to authenticate their knowledge gains to receive favorable consideration on college applications. In fact, there is currently no systematic credentialing mechanism to assess and validate the scientific rigor of and competency gains within STEM precollege programs for college admissions purposes. This NSF INCLUDES Design and Development Launch Pilot seeks to address this gap by developing and testing credentialing and badging processes for four STEM precollege programs. Working with College Admissions Officers and project partners, the University of Pittsburgh endeavors to employ a collaborative impact approach to build and document the collaborative infrastructure needed to support STEM precollege program authentication processes. This will seed the development of a networked improvement community that supports all aspects of the work from participant support to the collaborative impact to the greater network of urban education university ecosystems involved in the pilot.

Over a two-year period, this pilot will examine a mechanism to strengthen the STEM pathway for disadvantaged and underrepresented minority students to enter postsecondary STEM programs and eventually STEM careers. Building on two social innovation theories, the technical approach will focus on four specific aims: (1) create a community engagement framework to recruit underserved and underrepresented high school students to STEM precollege programs, (2) develop a STEM Success Matrix that identifies student competencies acquired in precollege programs that prepare students for collegiate success in STEM, (3) credential precollege programs using the STEM Success Matrix, and (4) develop a student badging system for precollege program participants using the STEM Success Matrix. Four University of Pittsburgh STEM precollege programs will serve as the context for development and testing with support from a range of partners representing the broader Pittsburgh STEM ecosystem. Approximately 300 high school students are expected to participate in the pilot, across the four precollege programs. Data will be collected via participant surveys and interviews. Formative and summative evaluations will be conducted by an experienced, external evaluator. Shareable metrics, tools, and processes will be developed and disseminated using various platforms and mechanisms. If successful, this pilot could be transformative - changing admissions considerations by credentialing STEM precollege programs and increasing student interest and motivation in STEM through student badging. It would also transform the STEM ecosystem of underserved and underrepresented minority students by creating an important STEM pathway from precollege to undergraduate admissions and ultimately, STEM Careers. This pilot could serve as a baseline for a more expansive alliance with other urban education ecosystems or assisting others interested in establishing their own collaborative infrastructure and networked improvement community model to achieve similar results.
DATE: -
TEAM MEMBERS: Alison Slinskey Legg Jennifer Iriti David Boone Alaine Allen Lori Delale-O'Connor
resource project Professional Development, Conferences, and Networks
The Louis Stokes Alliances for Minority Participation (LSAMP) program assists universities and colleges in diversifying the STEM workforce through their efforts at significantly increasing the numbers of students from historically underrepresented minority populations to successfully complete high quality degree programs in science, technology, engineering and mathematics (STEM) disciplines. The LSAMP Bridge to the Baccalaureate (B2B) funding opportunity provides support for historically underrepresented minority STEM students who begin their instruction at a community college with the intent to transfer into 4-year STEM degree programs in addition to other infrastructure support such as STEM faculty professional development. This project, Educational Network to GAin STEM Graduates and Enhance STEM Education (ENGAGE), broadens participation of underrepresented minority (URM) students and enhances diversity in STEM. Valencia College, on behalf of the Central Florida STEM Alliance (CFSA), seeks to significantly increase the number of URM STEM students transferring from CFSA two-year colleges, Valencia College, Lake-Sumter State College and Polk State College, to STEM baccalaureate degree programs at regional university partners, the Florida Institute of Technology, Florida Polytechnic University, University of Central Florida, University of Florida and University of South Florida.

ENGAGE creates a network between secondary education, community colleges, four-year institutions and graduate programs to offer viable pathways to STEM degree achievement. ENGAGE supports URM students' access and early exposure to STEM disciplines through comprehensive support services with linkages to university LSAMP partners including the Florida-Georgia LSAMP Bridges to the Doctorate program. ENGAGE advances research on effective practices in engaging URM students through the academic, social, and professional integration of STEM that aligns with the LSAMP model. ENGAGE informs the STEM community on institutional practices that impact recruitment, retention, and transfer-readiness strategies specific to URM STEM student success at two-year colleges. Through this LSAMP B2B partnership, ENGAGE seeks to achieve significant gains in the development of a diverse, globally-competitive workforce and create new STEM pathways for URM students leading to an increase of URM graduates with STEM baccalaureate and graduate degrees.
DATE: -
TEAM MEMBERS: Kathleen Plinske Cory Blackwell Reginal Webb Eugene Jones
resource project K-12 Programs
Community colleges play a vital role in educating undergraduate students. These higher education institutions educate nearly half of the nation's undergraduate students, particularly among low-income and first-generation students and students of color. Because of the rich diversity that currently exists at these institutional-types, there are immense opportunities to broadening participation throughout the engineering enterprise. To this end, the investigator outlines a joint collaboration with five community colleges, three school systems, two college career academies, and a state partner in Georgia - referred as the Georgia Science, Technology, and Engineering Partnerships for Success (GA STEPS) - to provide dual enrollment classes in career pathways for Georgia high school students in grades 9-12, thereby allowing secondary students to earn college credit. The Georgia STEPS program proposes to leverage mechatronics engineering as a means for broadening engineering participation for community colleges and underserved, underrepresented populations in 48 rural counties to increase engineering awareness, skills training and college and career readiness. The project builds on an existing collaboration that has developed successful engineering opportunities at the community college level, by including a wider regional network of rural Georgia counties and high schools. Further, this project has immense potential to transform engineering education and course-taking for students at the secondary and postsecondary level in Georgia and beyond. It has potential great potential to be scaled and replicated at other placed around the United States.

The project's intellectual merit and innovation is that it leverages a successful mechatronics engineering curriculum that supports engineering skills that support local industry as well as supporting innovations in the mechatronics field. The project includes a collective impact framework, involving various stakeholders and aligning quantitative and qualitative metrics and measurable objectives. The broader impacts of this project is that it increases the engineering knowledge and skills of underserved, underrepresented students that are enrolled in community colleges. Also, the impact to rural communities in Georgia support the fact that this project would meet broader groups that can be positively impacted by this type of collaborative. The ability to provide different parts of this engineering discipline across broad audiences in community colleges - that support underrepresented groups understanding of mechatronics engineering - is broadly useful to the field of engineering.
DATE: -
TEAM MEMBERS: Shawn Utley
resource research Public Programs
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
DATE:
resource evaluation Informal/Formal Connections
This is the final report from the external evaluator of the project that created MedLab, an interactive learning experiences for Chicago area middle and high school students. This external evaluator's final report summarizes the outcomes and impacts of the five-year (2012-2017) funding compared to project objectives. The aim of the project was to use in person and online curricula, including a humanoid patient simulator (iStan®), to build interest in and knowledge of health sciences and health careers, with a particular focus on local community health concerns. An additional goal was to
DATE:
TEAM MEMBERS: Christina Shane-Simpson John Fraser Susan Hannah Kin Kong Patricia Ward Rabiah Mayas
resource project Public Programs
This longitudinal research study will contribute to a broader understanding of the pathways of STEM-interested high school students from underrepresented groups who plan to pursue or complete science studies in their post-high school endeavors. The project will investigate the ways that formative authentic science experiences may support youth's persistence in STEM. The study focuses on approximately 900 urban youth who are high interest, high potential STEM students who participate in, or are alumni of, the Science Research Mentoring Program. This program provides intensive mentoring for high school youth from groups underrepresented in STEM careers. It takes place at 17 sites around New York City, including American Museum of Natural History, which is the original program site. Identifying key supports and obstacles in the pathways of high-interest, under-represented youth towards STEM careers can help practitioners design more inclusive and equitable STEM learning experiences and supports. In this way, the project will capitalize on student interest so that students with potential continue to persist.

In order to understand better the factors that influence these students, this research combines longitudinal social network and survey data with interviews and case studies, as well as an analysis of matched student data from New York City Public Schools' records. The research questions in the study are a) how do youths' social networks develop through their participation in scientists' communities of practice? b) what is the relationship between features of the communities of practice and youths' social networks, measures of academic achievement, and youths' pursuit of a STEM major? and c) what are the variations in youth pathways in relationship to learner characteristics, composition of social networks, and features of the community of practice? The research design allows for a rich, layered perspective of student pathways. In particular, by employing social network analysis, this study will reveal relational features of persistence that may be particularly critical for underrepresented youth, for whom STEM role models and cultural brokers provide an otherwise unavailable sense of belonging and identity in STEM. The study will also access a New York City Public Schools data set comprised of student-level records containing biographical and demographic variables, secondary and postsecondary course enrollment and grades, exam scores, persistence/graduation indicators, linked responses to post-secondary surveys, and post-education employment records and wages. These data enable examination of inter-relationships between in-school achievement and out-of-school STEM experiences through comparison of program participants to similar non-participant peers. This project is supported by NSF's EHR Core Research (ECR) program. The ECR program emphasizes fundamental STEM education research that generates foundational knowledge in the field.
DATE: -
TEAM MEMBERS: Preeti Gupta
resource evaluation Public Programs
During the school year of 2016-2017, Fairchild Tropical Botanic Garden (Fairchild) implemented the first year of a four-year project entitled: Growing Beyond Earth (GBE). NASA is providing funding support for project implementation as well as an external project evaluation. The evaluation activities conducted this year were focused on understanding project implementation and exploring project outcomes using data collected between September 2016 and May 2017. This report’s findings and accompanying recommendations inform next year’s project implementation and evaluation activities.
DATE:
TEAM MEMBERS: Catherine Raymond Amy Rubinson Carl Lewis Marion Litzinger Amy Padolf