This project had three objectives to build knowledge with respect to advancing Informal STEM Education:
Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.
Linked to these objectives were three project goals:
Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]
The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.
Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.
Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.
Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE:
-
TEAM MEMBERS:
Deb DunkhaseKristen MissallBenjamin DeVane
resourceevaluationProfessional Development, Conferences, and Networks
The Summative Study of the Nano Mini-exhibition took place during the spring and summer of 2012. After being observed during their Mini-exhibition experience, 455 visitors across six different partner institutions participated in surveys and interviews with NISE Net evaluation team members. This report begins by describing the key findings of the study in detail, with additional information about study methods, instruments, and two exploratory sub-studies found in the Appendices.
The Fort Worth Museum of Science and History will partner with The Exploratorium and with three smaller science museums that have strong connections to rural and Spanish-speaking populations in Texas: Discovery Science Place, Loredo Children's Museum, and Science Spectrum to develop TexNET, a four-year project modeled on the Exploratorium Network for Exhibit-based Teaching (ExNET). TexNET builds on lessons learned from past exhibit outreach models and addresses the needs of small, rural partners for exhibits and capacity-building workshops. Each small museum partner will host a set of ten exhibits for one year. Exhibit topics are 1) motion, 2) weather and 3) sound. Workshops focus on inquiry learning techniques, science content, programming and workshop design, as well as the institutional needs of each partner. Based on feedback from formative evaluation, the project added three additional partners in its final year, the Children's Museum of Houston, the Austin Children's Museum, and the Don Herrington Discovery Center, and focused its remaining year on building institutional capacity around tinkering. Inverness Research Associates will conduct the project evaluation. They will examine the success of this project by looking at the effectiveness of the TexNET model, the success of the individual exhibit elements to engage rural communities, the effectiveness with which this project has enhanced the abilities of local rural communities to sustain their own educational improvements and the effectiveness of the training components in increasing the capabilities of the local museums to serve their rural audiences.
DATE:
-
TEAM MEMBERS:
Charlie WalterSamuel DeanJoe HastingsRobert Lindsey
resourceprojectProfessional Development, Conferences, and Networks
Many museums currently produce bilingual exhibits, but very little research exists to inform practice. The Bilingual Exhibits Research Initiative (BERI), funded by the Advancing Informal STEM Learning (AISL) program at the National Science Foundation, addressed this critical knowledge gap. This exploratory research project investigated 1) current professional approaches to producing bilingual exhibits and 2) how bilingual exhibits provide opportunities for Spanish-speaking Latinos to engage in informal science learning. BERI's research with museum and science center staff documents current professional knowledge, concerns, opportunities, and constraints involved in the creation of bilingual exhibits. BERI's research with visitors explores how content and design affords and constrains visitors' engagement in museums and science centers. This work will inform professionals about the relevant factors and potential consequences of their decisions related to bilingual exhibits.