Skip to main content

Community Repository Search Results

resource project Public Programs
The Mississippi Alliance for Women in Computing (MAWC) project will identify factors that influence and motivate female students and female African American students in Mississippi to enroll and persist in an undergraduate engineering- or science-based computing major. There is a particular need for programming that is inclusive of women and women of color who are from the southern region of the United States. These students typically have less access to extracurricular activities that encourage computing, and are less likely to visualize themselves in a computing major or career. This proposed research is to help girls to know that computer science exists and what jobs in computer science are available with a degree in computer science. A rich environment exists in Mississippi for an alliance focused on building co-curricular and mentorship opportunities. A scalable pipeline model, expandable to a Southern Alliance for Women in Computing (SAWC), will be developed with three major objectives: to attract women and women of color to computing, to improve retention rates of women in undergraduate computing majors, and to help postsecondary women make the transition to the computing workforce. Activities to support these objectives include: scaling the National Center for Women and Information Technology Aspirations in Computing award program in Mississippi, expanding scholarships for Aspirations winners, expanding student-led computing outreach programs, establishing a Mississippi Black Girls Code chapter, informing and collaborating with the Computer Science for Mississippi initiative, creating a summer bridge and living-learning community for women in computing majors, and increasing professional development opportunities for women in computing through conferences, lunch and learn meetings, job shadowing, and internships.

The project will analyze whether the co-curricular activities of MAWC lead to computing self-efficacy and ultimately female students selecting to pursue and persist in computing majors and careers. In order to understand student participation and efficacy changes, data collection for this research will be through demographic and background surveys administered to women entering an undergraduate engineering- or science-based computing major at a university in Mississippi and student surveys and evaluations in MAWC-sponsored programs. Using discriminate analysis methods, specific research questions to be addressed are: 1) Which pre-collegiate experiences influenced them to enroll, 2) Which stakeholders influenced these girls in their decision-making process, and 3) What programs are effective in impacting their persistence in the major. Predictor variables for each respective research question are: pre-collegiate experiences, stakeholders, and programs. Outcome variables are: (a) a female undergraduate student with no involvement with MAWC programming, (b) MAWC activity participant, or (c) a MAWC participant having graduated with a bachelor?s degree in a STEM major. Results will complement published longitudinal research on the gendered and raced dimensions of computing literacy acquisition in Mississippi as well as research on effective CS role model programming.
DATE: -
TEAM MEMBERS: Sarah Lee Vemitra White
resource project Public Programs
This project will coordinate and focus existing educational elements with the common goal of increasing the participation of underrepresented minorities in STEM degree programs and the STEM workforce. This goal will help the US maintain its leadership in science and engineering innovation while supporting the expansion of the talent pool needed to fuel economic growth in technical areas. The program will feature an assessment system that addresses both social influence factors and the transfer of STEM skills with the aim of identifying the reasons that underrepresented minorities leave the STEM pipeline. By including both curricular and extracurricular elements of the STEM pipeline, ranging from middle school through college, the program will be able to respond quickly to findings from the assessment component and take proactive steps to retain STEM students and maintain their self perception as future scientists or engineers.

The program proposes to assess, unite and coordinate elements in the New Mexico STEM pipeline with the ultimate goal of increasing the participation of underrepresented groups in the STEM workforce. The need to grow a diverse science, technology, engineering and mathematics (STEM) workforce is recognized throughout the State of New Mexico, and beyond, by both the public and private sectors. The project develops a crosscutting assessment system that addresses both social influence factors and the skills component of STEM education. The project develops a collective impact framework aimed at increasing the participation of underrepresented minorities in the STEM workforce and implements a common assessment system for students in the 6-20+ STEM pipeline. This assessment system will address both social influence factors and the transfer of STEM related skills with the aim of building a research base to investigate why students from underrepresented minorities leave the STEM pipeline. The output from this research will drive the development of a set of best practices for increasing retention and a scheme for improving the integration of minority students into the STEM community. The retention model developed as part of the program will be shared with the STEM partners through a series of workshops with the goal of developing a more coordinated approach to the retention of underrepresented minorities. The program focuses on a small set of STEM programs with existing connections to the College of Engineering.
DATE: -
TEAM MEMBERS: Steven Stochaj Patricia Sullivan Luis Vazquez
resource project Public Programs
Utah Valley University (UVU) with partners Weber State University (WSU) and American Indian Services (AIS) are implementing UTAH PREP (PREParation for STEM Careers) to address the need for early preparation in mathematics to strengthen and invigorate the secondary-to-postsecondary-to-career STEM pipeline. As the preliminary groundwork for UTAH PREP, each partner currently hosts a PREP program (UVU PREP, WSU PREP, and AIS PREP) that identifies low-income, under-represented minority, first-generation, and female students entering seventh grade who have interest and aptitude in math and science, and involves them in a seven-week, three-year summer intensive program integrating STEM courses and activities. The course content blends skill-building academics with engaging experiences that promote a clear understanding of how mathematical concepts and procedures are applied in various fields of science and engineering. Courses are enhanced through special projects, field trips, college campus visits, and the annual Sci-Tech EXPO. The purpose of the program is to motivate and prepare participants from diverse backgrounds to complete a rigorous program of mathematics in high school so that they can successfully pursue STEM studies and careers, which are vital to advancing the regional and national welfare.

UTAH PREP is based on the TexPREP program that originated at the University of Texas at San Antonio and which was named as one of the Bright Spots in Hispanic Education by the White House Initiative on Educational Excellence for Hispanics in 2015. TexPREP was adapted by UVU for use in Utah for non-minority serving institutions and in regions with lower minority populations, but with great academic and college participation disparity. With NSF funding for a two-year pilot program, the project partners are building UTAH PREP through a networked improvement community, collective impact approach that, if demonstrably successful, has the ability to scale to a national level. This pilot program's objectives include: 1) creating a UTAH PREP collaboration with commitments to a common set of objectives and common set of plans to achieve them; 2) strengthening existing PREP programs and initiating UTAH PREP at two or three other institutions of higher education in Utah, each building a sustainable local support network; 3) developing a shared measurement system to assess the impact of UTAH PREP programs, adaptations, and mutually reinforcing activities on students, including those from groups that are underrepresented in STEM disciplines; and 4) initiating a backbone organization that will support future scaling of the program's impact.
DATE: -
TEAM MEMBERS: Daniel Horns Andrew Stone Violeta Vasilevska
resource project Media and Technology
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE: -
TEAM MEMBERS: Julia Parrish Marco Hatch Selina Heppell
resource project Public Programs
This innovative research project promotes the progress of science, enhances the national STEM workforce, and benefits society by helping to overcome the challenge of broadening participation of those who are underrepresented in STEM fields. Although many programs designed to broaden participation exist, few individuals in "STEM-disenfranchised" populations -- individuals who feel alienated, marginalized, or incapable of participating in STEM -- choose to make use of these opportunities, due mainly to their own self-identities. This project's focus is on three STEM-disenfranchised groups: 1) adults who have been recently released from incarceration; 2) youth who have been released from juvenile custody; and 3) refugee youth, and builds on existing science education programs. The research team will establish the "Alliance to Strengthen the STEM Tapestry (ASSiST)" -- with members from academia, workforce agencies, NGOs, and government agencies -- to explore how individuals who have an identity prematurely tied to failure in science might benefit from novel interventions that promote a shift of self-identity to becoming science learners, which will then lead them to explore STEM education and job training resources that already exist. Three novel interventions will involve drama activities, story- telling, and ecological restoration projects. This bold approach is designed to help these populations interweave their diverse ways of knowing with STEM workforce, higher education, and to become science-aware citizens, which will enhance U.S. leadership in STEM. ASSisT will create a strategic plan that can be interwoven with those of other NSF INCLUDES Alliances, and identify pathways to distribute outcomes to a national level. This work will provide pathways to bring other groups that are disenfranchised and who -- if motivated and directed -- could strengthen the STEM workforce and education tapestry.

Investments to broaden participation in science in the USA have supported abundant programs and resources, but few individual in "STEM-disenfranchised" populations -- individuals who feel alienated, marginalized, or incapable of participating in STEM -- choose to make use of these opportunities, due most significantly to their own self-identities. The proposed "Alliance to Strengthen the STEM Tapestry (ASSisT)" will carry out research on novel interventions that are designed to lead these individuals to avail themselves of the science education and training resources that already exist. The initial focus is on: 1) adults who have been recently released from incarceration; 2) youth who have been released from juvenile custody; and 3) refugee youth. Using a collective impact approach, ASSisT will carry out early-exploratory research to investigate how the project's novel interventions -- 1) ecological restoration, 2) story-telling/autoethnography, and 3) devised theater -- might shift participants towards self-identification and subsequent involvement with the STEM community. The Intellectual Merit of our approach is grounded in social science research, specifically, identity theory, social cognitive theory, and resilience theory. Using a one-group pretest-posttest design, qualitative research techniques will identify which elements are most critical to foster change, e.g., perceived competence in STEM subjects, congruence of self-perception with those in STEM, mastery of STEM workforce skills, and/or the importance of being a STEM-aware citizen. Broader impacts relate directly to NSF's call for greater STEM participation of women and underrepresented ethnic and socioeconomic minorities with impacts on the initial 30 cohort members for this pilot project. ASSisT will: create a common agenda; recruit cohorts of each STEM-disenfranchised group; design and implement research to test novel interventions; populate a STEM opportunities map; evaluate and analyze outcomes; articulate a strategic plan that can be interwoven with those of other NSF INCLUDES Alliances; and identify pathways to disseminate outcomes and benchmarks to a national level.
DATE: -
TEAM MEMBERS: Nalini Nadkarni Jordan Gerton Diane Pataki Sydney Cheek-O'Donnell Russell Isabella
resource project Public Programs
A non-technical description of the project test explains its significance and importance.

The goal of this project is to help students easily identify themselves as science or engineering professionals and increase the proportion of the local population, dominantly minorities, who pursue science and technology careers. Experience has demonstrated that students are most engaged in technical fields when they can participate in active, hands-on learning around problems with application to their local community. The focus of the effort is in marine science, which has local relevance to both the environment and the economy of the U.S. Virgin Islands. The project will use interventions at three crucial stages: middle school, high-school-college transition, and master-PhD transition, to engage students with specific active-learning and research-oriented programs. Community partners comprise a wide-ranging local organization that leverages the resources of other successful collaborations.

A technical description of the project

This project will create a transferable model that uses innovative partnerships among universities, governmental and non-governmental organizations, a professional society, and businesses, to create a local backbone organization with a shared vision for change and common success metrics broaden participation in science, technology, engineering, and mathematics (STEM). This project addresses the critical challenge of building scientific identity to increase interest and engagement of underrepresented minorities in STEM fields in the U.S. Virgin Islands. The plan includes targeted interventions at three significant times in the student career pathway (middle/high school, early college, and graduate school) that comprise: (1) field experiences in the marine sciences for middle/high school students, (2) early field research experiences for college freshmen and sophomore students, (3) bridge programming to a Ph.D. partnership with Pennsylvania State University, and (4) an intensive mentoring program. The model is grounded in social innovation theory through a framework that meets the five conditions for collective impact: common agenda, shared measurement of data and results, mutually reinforcing activities, continuous communication, and backbone support.
DATE: -
TEAM MEMBERS: Kristin Wilson Grimes Marilyn Brandt Nastassia Jones Carrie Bucklin Monica Medina
resource project Public Programs
General Summary

Because of the siloed nature of formal educational curricula, students who opt out of STEM coursework, for whatever reason, lose the opportunity to engage with the domain of science almost entirely, thereby closing the door to the STEM workforce pipeline. This disproportionately impacts students of color and women. This project advances an alliance that consists of a consortium of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and local businesses. The project built around this alliance will leverage interdisciplinary spaces in the curriculum, particularly the humanities and social sciences, across academic levels, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life. The PIs establish a physical Community STEM Center as an anchoring institution for STEM engagement. This Center will be situated within the community that the alliance serves, bringing STEM opportunities and engagement to students instead of asking them to come where STEM education is currently provided. The activities enacted through the Community STEM Center will focus on enduring problems experienced by the communities, where students, community residents, teachers, and experts from higher education, industry and other community-based entities can come together to work on understanding them and developing evidenced centered advocacy as a means for addressing them. To facilitate the work at the Community STEM Center, the project creates a Community Ambassadors Program (CAP), leveraging participation across alliance members in partnership with the community. This Design and Development Launch Pilot will cultivate the necessary knowledgebase to develop a scalable model for implementation across diverse urban communities.

Technical Summary

This Design and Development Launch Pilot focuses on shifting the narrative of STEM education away from a solitary focus on formalized educational experiences and targets STEM content. This project develops and facilitates a parallel set of activities designed to engage under-represented students in learning how and why STEM is relevant to their lives, and approached through new and non-traditional educational dimensions. The five main objectives of this proposed pilot are to: (1) Develop a pilot alliance of community-engaged partners, including university and k-12 educational agencies, community colleges, community organizations, cultural institutions and industry;(2)Establish a physical Community STEM Advocacy Center as an anchoring institution for change embedded within the community that the pilot alliance serves; (3) Leverage interdisciplinary spaces in curricula, across academic levels, particularly the humanities and social sciences, as a forum for integrating and applying STEM to bear on the practical, social, economic and political issues of modern life; (4) Create a Community Ambassadors Program (CAP), leveraging participation across higher education pilot alliance members in partnership with the community; and (5)Conduct an evaluation of project initiatives and research regarding the usability and feasibility of a systemic approach to developing community-based, interdisciplinary pathways to broaden STEM participation pathways. Efforts to examine the impact of this community-based, interdisciplinary approach concentrates on the proximal outcomes related to STEM interest, self-efficacy and identity. Data will be collected in pre/post format across our three constituent samples: 1) Community STEM Advocacy Center participants; 2) k-12 students; and, 3) postsecondary students. Analysis of data will be conducted through MANCOVAs to account for potential co-variation among construct scores. Qualitative data will also be collected to contextualize findings and enable the development of a rich case study. At least two observations will be conducted in the Community STEM Advocacy Center and the two classroom implementations to document engagement, participant interactions and level of STEM content.
DATE: -
TEAM MEMBERS: Kimberly Lawless Donald Wink Ludwig Carlos Nitsche Aixa Alfonso Jeremiah Abiade
resource project Public Programs
The Yellowstone Altai-Sayan Project (YASP) brings together student and professional researchers with Indigenous communities in domestic (intermountain western U.S.) and international (northwest Mongolian) settings. Supported by a National Science Foundation grant, MSU and tribal college student participants performed research projects in their home communities (including Crow, Northern Cheyenne, Fort Peck Assiniboine & Sioux, and Fort Berthold Mandan, Hidatsa and Sahnish) during spring semester 2016. In the spirit of reciprocity, these projects were then offered in comparative research contexts during summer 2016, working with Indigenous researchers and herder (semi-nomadic) communities in the Darhad Valley of northwestern Mongolia, where our partner organization, BioRegions International, has worked since 1998. In both places, Indigenous Research Methodologies and a complementary approach called Holistic Management guided how and what research was performed, and were in turn enriched by Mongolian research methodologies. Ongoing conversations with community members inspire the research questions, methods of data collection, as well as how and what is disseminated, and to whom. The Project represents an ongoing relationship with and between Indigenous communities in two comparable bioregions*: the Big Sky of the Greater Yellowstone Ecosystem, and the Eternal Blue Sky of Northern Mongolia.

*A ‘bioregion’ encompasses landscapes, natural processes and human elements as equal parts of the whole (see http://bioregions.org/).
DATE: -
TEAM MEMBERS: Kristin Ruppel Clifford Montagne Lisa Lone Fight
resource project Public Programs
The Colleges of Science & Engineering and Graduate Education, and the Metro Academies College Success Program (Metro) at San Francisco State University in partnership with San Francisco Unified School District and the San Francisco Chamber of Commerce develop an integrated approach for computing education that overcomes obstacles hampering broader participation in the U.S. science, technology, engineering and mathematics (STEM) workforce. The partnership fosters a more diverse and computing-proficient STEM workforce by establishing an inclusive education approach in computer science (CS), information technology, and computer engineering that keeps students at all levels engaged and successful in computing and graduates them STEM career-ready.

Utilizing the collective impact framework maximizes the efficacy of existing regional organizations to broaden participation of groups under-educated in computing. The collective impact model establishes a rich context for organizational engagement in inclusive teaching and learning of CS. The combination of the collective impact model of social agency and direct engagements with communities yields unique insights into the views and experiences of the target population of students and serves as a platform for national scalable networks.
DATE: -
TEAM MEMBERS: Keith Bowman Ilmi Yoon Larry Horvath Eric Hsu James Ryan
resource research Public Programs
Science, technology, engineering, and mathematics (STEM) education and programming has become a priority in our nation. In the United States, the STEM pipeline is considered "leaky" as many students disengage from STEM at various points during their lives. In particular, women, Latinos, and African Americans are more likely to disengage from the STEM pipeline. American students are less likely to earn STEM postsecondary and graduate degrees compared to other nations. As careers in STEM fields are expected to increase at a faster rate than other occupations, there is growing concern about the
DATE:
TEAM MEMBERS: Annette Shtivelband Amanda Wallander Roberts Robert Jakubowski
resource project Public Programs
General Summary

This project seeks to prepare female Hispanic students for leadership in the STEM workforce. The project seeks to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky workforce and educational pipeline resulting in matriculation to and graduation from undergraduate STEM programs. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce. To accomplish these goals, the PIs will: (1) work with partners to identify, recruit, and screen bright, energetic Hispanic females in their freshman year of high school who show promise and interest in STEM disciplines; (2) engage selected students and their families in formal and informal STEM learning both throughout the school year and during summer residential experiences to enable the students to further develop and clarify their STEM calling; (3)prepare the students to matriculate to undergraduate college; (4) provide program participants with full-tuition scholarships to ensure undergraduate education is attainable; and (5) at our institution and partner colleges, provide dedicated advisors and mentors and cohort activities to ensure undergraduate persistence and success.

Technical Summary

The PIs seek to prepare female Hispanic students for leadership in the STEM workforce. To compete in the global economy, maintain national security, and meet serious environmental challenges, more skilled graduates are needed to fill STEM jobs. An untapped source of talent exists in those populations that continue to be underrepresented in STEM fields, including women and people of color. This work will help to determine if a blended set of STEM engagement activities including summer intensive laboratory-based experiential learning and out-of-school STEM activities, peer support, mentoring, and financial assistance can help to take target students through a traditional leaky pipeline resulting in matriculation to and graduation from undergraduate STEM education. The work builds on research that shows that mentored research opportunities and peer support and interaction improves persistence in female students. It also builds on regional models of collective impact whereby a variety of corporate, nonprofit, and foundation organizations successfully join together for large-impact projects. If successful, the work will increase participation and leadership of Hispanic women in the STEM workforce.
DATE: -
TEAM MEMBERS: April Marchetti Charles English Rebecca Michelsen Rachele Dominguez Laurie Massery
resource project Public Programs
General Abstract:

This NSF INCLUDES Launch Pilot project, STEPs to STEM, will create a statewide STEM pipeline within an integrated program of community college education throughout the state prisons of New Jersey. The Pilot leverages a long-standing collaboration among education, government, and volunteer sectors including NJ-Scholarship and Transformative Education in Prisons (STEP), all of whom commit to work together to accredit and ensure articulation (transferability) of the required STEM courses. The broadening participation challenge that will be addressed by this Pilot is to extend college-level STEM education to incarcerated persons, who are overwhelmingly minorities from the lowest socioeconomic levels of American society. Education in general and STEM education in particular equips students for high-level workforce readiness, offering improved quality of life for formerly incarcerated persons and their families and contributing to American economic success.

Technical Abstract:

Four major goals of the Pilot are: 1. consolidate and ensure articulation of STEM A.A. courses in NJ state prisons with a seamless path to B.A. study at Rutgers, the State University of New Jersey; 2. begin teaching new accredited STEM courses and offering REU and internship opportunities to released students; 3. implement tracking of students in STEM courses while incarcerated and beyond, enabling a supplementary research goal to evaluate student and teacher performance in comparison with mainstream educational settings; 4. work with partners in business, government, non-profit, development, and public sectors to build a complete STEM pipeline with a long-term goal of enabling formerly incarcerated students to clear their records through education and workforce participation in STEM. Implementation of the goals will proceed as follows. Senior personnel from each of the cooperating institutions and a jointly-supervised postdoctoral trainee will negotiate the terms of accreditation and articulation across the state system with our partner, the lead accreditation institution, Raritan Valley Community College. Teaching of STEM courses by our established team of volunteers will commence as each course is accredited. Our industry and research partners will begin offering REU and training internships in the first summer. Educational research professional on the team will guide the design, implementation, and analysis of student and teacher performance. New partners will be brought in to the collective from the non-profit, business, and public sectors to extend the reach and impact of this initiative.
DATE: -
TEAM MEMBERS: Jannette Carey James Gunn