Out-of-school settings promise to broaden participation in science to groups that are often left out of school-based opportunities. Increasing such involvement is premised on the notion that science is intricately tied to “the social, material, and personal well-being” of individuals, groups, and nations—indicators and aspirations that are deeply linked with understandings of equity, justice, and democracy. In this essay, the authors argue that dehistoricized and depoliticized meanings of equity, and the accompanying assumptions and goals of equity-oriented research and practice, threaten to
This NSF INCLUDES Design and Development Launch Pilot will improve math achievement among elementary school students of color in public schools in Albuquerque, New Mexico. Recognizing the need to coordinate efforts related to students' math and science achievement, key stakeholders formed the NM STEM Ecosystem, a dynamic network of cross-sector partners committed to making real impact on STEM education and degree attainment in Albuquerque. The NM STEM Ecosystem identified the math achievement gap between low-income students of color and their more economically-advantaged peers as the Broadening Participation (BP) Challenge it would address first. While math achievement gaps between students of color and Caucasian students appear nationally, the situation is particularly dire in New Mexico. In order to keep doors open to future STEM careers, it is crucial that learning pathways for math are articulated early and that these pathways honor families' cultural ways of knowing. The innovative strategy of Math Families & Communities Empowering Student Success (Math FACESS) is to use a collective impact approach to close the math achievement gap by connecting formal and informal STEM educators around a coherent, multi-faceted program of early mathematics teaching and learning that empowers parents and teachers to support children's mathematical development. Implementation of Math FACESS includes four major components: 1) Teachers at two pilot schools will participate in professional development related to Math Talk and Listening; 2) Parents at the pilot schools will participate in parent workshops and community-based activities focused on supporting their children's math achievement; 3) Project partners will implement community-based family activities organized around a theme of Twelve Months of Math; and 4) Ecosystem partners will study what worked and what didn't, in order to identify best practices that can be shared with system leaders to scale effective practices and increase impact.
The near-term objectives for Math FACESS are: 1) improve students' attitudes, practices, and achievement in math; 2) improve parents' attitudes, practices, and confidence in math and increase their utilization of family math resources; 3) improve data-sharing among partners related to math participation and achievement; and 4) create pathways within the Ecosystem for family math learning. The effectiveness of the collective impact model and impacts on partner organizations also will be assessed. Through the math FACESS Launch Pilot, the NM STEM Ecosystem plans to: 1) demonstrate the power of a collective impact social innovation framework to address a systemic community condition -- in this case, the math achievement gap; 2) contribute to theory-of-change research that demonstrates student achievement can be affected by working with parents and teachers; and 3) provide a model that values different ways of knowing and uses cultural context in the design of STEM learning opportunities for students, families, and schools.
DATE:
-
TEAM MEMBERS:
Joe HastingsArmelle CasauObenshain KorenKersti TysonAngelo Gonzales
This NSF INCLUDES Design and Development Launch Pilot, "Expanding Diversity in Energy and Environmental Sustainability (EDEES)", will develop a network of institutions in the United States mid-Atlantic region to recruit, train, and prepare a significant number of underrepresented, underserved, and underprivileged members of the American society in the areas of alternative energy generation and environmental sustainability. Researchers from Delaware State University (DSU) will lead the effort in collaboration with scientists and educators from the University of Delaware, Delaware Technical Community College, University of Maryland, and Stony Brook University. The program comprises a strong educational component in different aspects of green energy generation and environmental sciences including the development of a baccalaureate degree in Green Energy Engineering and the further growth of the recently established Renewable Energy Education Center at our University. The program comprises an active involvement of students from local K-12 institutions, including Delaware State University Early College High School. The character of the University as a Historically Black College (HBCU) and the relatively high minority population of the region will facilitate the completion of the goal to serve minority students. The program will also involve the local community and the private sector by promoting the idea of a green City of Dover, Delaware, in the years to come.
The goal of EDEES-INCLUDES pilot comprises the enrollment of at least twenty underrepresented minority students in majors related to green energy and environmental sustainability. It also entails the establishment of a baccalaureate degree in Green Energy Engineering at DSU. The program is expected to strengthen the pathway from two-year energy-related associate degree programs to four-year degrees by ensuring at least five students/year transfer to DSU in energy-related programs. The pilot is also expected to increase the number of high school graduates from underrepresented groups who choose to attend college in STEM majors. Based on previous experience and existing collaborations, the partner institutions expect to grow as an integrated research-educational network where students will be able to obtain expertise in the competitive field of green energy. The pilot program comprises a deep integration of education and research currently undergoing in the involved institutions. In collaboration with its partner institutions, DSU plans to consistently and systematically involve students from the K-12 system to nurture the future recruitment efforts of the network. A career in Green Energy Engineering is using and expanding up existing infrastructure and collaborations. The program will involve the local community through events, workshops and open discussions on energy related fields using social networks and other internet technology in order to promote energy literacy.
DATE:
-
TEAM MEMBERS:
Aristides MarcanoMohammed KhanGulnihal OzbayGabriel Gwanmesia
resourceprojectGames, Simulations, and Interactives
EMERGE in STEM (Education for Minorities to Effectively Raise Graduation and Employment in STEM) is a NSF INCLUDES Design and Development Launch Pilot. This project addresses the broadening participation challenge of increasing participation of women, the at-risk minority population, and the deaf in the STEM workforce. The project incorporates in and out-of-school career awareness activities for grades 4-12 in a high poverty community in Guilford County, North Carolina. EMERGE in STEM brings together a constellation of existing community partners from all three sectors (public, private, government) to leverage and expand mutually reinforcing STEM career awareness and workforce development activities in new ways by using a collective impact approach.
This project builds on a local network to infuse career exposure elements into the existing mutually reinforcing STEM activities and interventions in the community. A STEM education and career exposure software, Learning Blade, will be used to reach approximately 15,000 students. A shared measurement system and assessment process will contribute to the evaluation of the effectiveness of the collective impact strategies, the implementation of mutually reinforcing activities across the partnership and the extent to which project efforts attract students to consider STEM careers.
DATE:
-
TEAM MEMBERS:
Gregory MontyMargaret KanipesMalcolm SchugSteven Jiang
In March of 2016, the Exploratorium transmitted a live webcast of a total solar eclipse from Woleai, a remote island in the southwestern Pacific. The webcast reached over 1 million viewers. Evaluation reveals effective use of digital media to engage learners in solar science and related STEM content.
Edu, Inc. conducted an external evaluation study that shows clear and consistent evidence of broad distribution of STEM content through multiple online channels, social media, pre-produced videos, and an app for mobile devices. IBM Watson did a deep analysis of tweets on eclipse topics that
In this case study, we highlight the work of the Bay Area STEM Ecosystem, which aims to increase equity and access to STEM learning opportunities in underserved communities. First, we lay out the problems they are trying to solve and give a high level overview of the Bay Area STEM Ecosystem’s approach to addressing them. Then, based on field observations and interviews, we highlight both the successes and some missed opportunities from the first collaborative program of this Ecosystem. Both the successes of The Bay Area STEM Ecosystem--as well as the partners’ willingness to share and examine
This project is developing and implementing a strong environmental literacy and science education program to accompany NOAA's Science on a Sphere (SOS) at The National Maritime Center's Nauticus museum. The program will use the SOS as a focal point to support learning about global oceanic and atmospheric circulations and their effect on local environments. The team is creating real-time global displays of environmental phenomena for the SOS from the expansive University of Wisconsin environmental satellite database. Computer visualization systems and user-driven interactive displays will allow viewers to move from global scale to regional and local scale in order to explore specific features of the phenomena being visualized and to understand them in greater detail. The displays will be integrated with high quality education materials that are aligned with national standards and specifically address the NOAA Education Strategic Plan. The teaming of the University of Wisconsin, Hampton University, and the National Maritime Center offers the opportunity to expose students from ethnic minority groups to various NOAA career paths and help produce graduates with solid technical backgrounds.
This project aims to develop and implement residential and non-residential science camp and summer camp programs and related activities to over 1500 youth and teachers from 8 elementary and middle schools. NOAA's Multicultural Education for Resource Issues Threatening Oceans (MERITO) program will serve as a key outreach mechanism to reach underserved youth and their families. The proposed project will utilize existing ocean educational materials, including those developed by NOAA, in experiential learning programs for youth through Camp SEA (Science, Education, Adventure) Lab. The two major goals of the project are: (1) to develop and implement marine-oriented outdoor science and summer camps in close collaboration with the Monterey Bay National Marine Sanctuary, resulting in an effective model for dissemination of the Ocean Literacy Essential Principles and Fundamental Concepts to large numbers of youth and their teachers; and 2) to develop a model and a feasibility plan to implement the program across a broader geographical area, e.g. through other National Marine Sanctuaries.
Science On a Sphere (SOS) at Fiske Planetarium will raise awareness and understanding of Earth system science for over 30,000 visitors per year, using student docents and newly-developed, tested pedagogy. SOS will enhance Fiske's ability to engage 3,000 university students and 30,000 K-12 students and members of the public. A student docent program will transform the traditionally passive experience of a planetarium visit into an interactive learning opportunity. The docents will be drawn from two sources: undergraduates who will be future science teachers, who we take from a selective CU program called "STEM-TP", and Hispanic university and high school students taught by Fiske's planetarium manager Francisco Salas. Docents will talk with visitors and help them understand key science issues that affect the earth, leading to more informed decision-making. Fiske will develop bilingual pedagogical material and new data sets, and share them with NOAA and SOS sites. To support the docents, and visiting students and teachers, Fiske Education Manager Traub-Metlay will lead development of explanatory materials that challenge visitors and provide context for what they are seeing. These will be translated into Spanish by Fiske Manager Salas. New data sets, contributed by faculty members, will expand the range of SOS, into space, adding solar interior models, the celestial sphere, and the cosmic background radiation from the Big Bang, along with new terrestrial data such as the worldwide distribution of forest fires. SOS will become a focal point in Fiske's longstanding tradition of teacher workshops, which are often done in cooperation with the University of Colorado and NOAA scientists and highlight NOAA s role monitoring the earth and sun. It also will be integrated with a small suite of hands-on exhibits we are installing that explain how observations can be made in infrared, ultraviolet, and X-rays in addition to visible light. These would complement SOS, which features multi-wavelength data. Fiske and its Boulder Colorado-area partners have raised $75,000 to cover the full cost of SOS hardware, and have formal institutional commitments to long-term program development. This award from NOAA will go into materials development, evaluation, and student pay. Colorado communities are aware of NOAA s important work and the nearby David SkaggsCenter , but security measures make it difficult to visit there. Fiske is much more accessible. Fiske will improve the usefulness of all SOS sites by conducting formative evaluation to assess what kinds of SOS presentations work best with public and school audiences, giving feedback to NOAA and all SOS users.
The Ocean Project will empower America's zoos, aquariums and science museums to become centers of innovation and effective leadership for healthy oceans and conservation in their communities, providing meaningful engagement opportunities for their 200 million annual visitors to become involved in helping with solutions. To help them do so, The Ocean Project is launching a competitive Innovative Solutions Grants Program that will provide financial resources for zoos, aquariums and science museums to develop innovative local and regional ocean conservation solutions and stewardship initiatives, with a special emphasis on engaging youth and minorities. To leverage and maximize the benefit of this small grants program, The Ocean Project will also provide the awardees with opportunities for capacity building in strategic communications and share the resulting new strategies and successes with our growing partner network of 2000 zoos, aquariums, science museums and other conservation and education organizations in all 50 States and worldwide.
As part of the development work of Latina SciGirls, the independent evaluation firm Knight Williams Inc. conducted a front-end evaluation focused on gathering input from the project’s primary public audiences (Latina girls and their parents/guardians) and professional audiences (the project’s advisers and partners).
Appendix includes logic model.
The U.S. Education system is becoming more and more diverse and educators must adapt to continue to be effective. Educators must embrace the diversity of language, color, and history that comprises the typical classroom; this means becoming culturally competent. In doing so, comes with it the prospect of using culture to enhance the learning experience for students and the educator. Although the process of becoming culturally competent can be outlined, the realization of a culturally competent educator depends on changing one’s own perceptions and beliefs. The need for cultural competency and