Developmental perspectives on prejudice provide a fundamental and important key to the puzzle for determining how to address prejudice. Research with historically disadvantaged and advantaged groups in childhood and adolescence reveals the complexity of social cognitive and moral judgments about prejudice, discrimination, bias, and exclusion. Children are aware of status and hierarchies, and often reject the status quo. Intervention, to be effective, must happen early in development, before prejudice and stereotypes are deeply entrenched.
Students in the U.S. educational system are increasingly diverse, and this diversity is reflected in science, technology, engineering, and mathematics (STEM) fields. Diversity in education encompasses students from many races, genders, and socioeconomic backgrounds; students who speak a variety of languages; and students from many cultures. For instance, ethnic diversity increased by 5% across primary and secondary public schools from 2000 to 2007 (Aud, Fox, & KewalRamani, 2010). Diversity is also evident in the socioeconomic make-up of students, with almost half of 4th graders in public
This full scale research and development collaborative project between Smith College and Springfield Technical Community College improves technical literacy for children in the area of engineering education through the Through My Window learning environment. The instructional design of the learning environment results from the application of innovative educational approaches based on research in the learning sciences—Egan's Imaginative Education (IE) and Knowledge Building (KB). The project provides idea-centered engineering curriculum that facilitates deep learning of engineering concepts through the use of developmentally appropriate narrative and interactive multimedia via interactive forums and blogs, young adult novels (audio and text with English and Spanish versions), eight extensive tie-in activities, an offline teachers’ curriculum guide, and social network connections and electronic portfolios. Targeting traditionally underrepresented groups in engineering—especially girls—the overarching goals of the project are improving attitudes toward engineering; providing a deeper understanding of what engineering is about; supporting the development of specific engineering skills; and increasing interest in engineering careers. The project will address the following research questions: What is the quality of the knowledge building discourse? Does it get better over time? Will students, given the opportunity, extend the discourse to new areas? What scaffolding does the learning environment need to support novice participants in this discourse? Does the use of narrative influence participation in knowledge building? Are certain types of narratives more effective in influencing participation in knowledge building? Evaluative feedback for usability, value effectiveness, and ease of implementation from informal educators and leaders from the Connecticut After School Network CTASN) will be included. The evaluation will include documentation on the impact of narrative and multimedia tools in the area of engineering education. Currently, there is very little research regarding children and young teen engagement in engineering education activities using narrative as a structure to facilitate learning engineering concepts and principles. The research and activities developed from this proposed project contributes to the field of Informal Science and Engineering Education. The results from this project could impact upper elementary and middle-school aged children and members from underrepresented communities and girls in a positive way.
The Exploratorium, in collaboration with the Boys and Girls Club Columbia Park (BGC) in the Mission District of San Francisco, is implementing a two-year exploratory project designed to support informal education in science, technology, engineering, and mathematics (STEM) within underserved Latino communities. Building off of and expanding on non-STEM-related efforts in a few major U.S. cities and Europe, the Exploratorium, BGC, and residents of the District will engage in a STEM exhibit and program co-development process that will physically convert metered parking spaces in front of the Club into transformative public places called "parklets." The BGC parklet will feature interactive, bilingual science and technology exhibits, programs and events targeting audiences including youth ages 8 - 17 and intergenerational families and groups primarily in the Mission District and users of the BGC. Parklet exhibits and programs will focus on STEM content related to "Observing the Urban Environment," with a focus on community sustainability. The project explores one approach to working with and engaging the public in their everyday environment with relevant STEM learning experiences. The development and evaluation processes are being positioned as a model for possible expansion throughout the city and to other cities.
The Challenger Reach 2 U program will reach over 6,500 fourth-grade students in 261 missions from underserved communities throughout southwest Colorado and northwestern New Mexico, including primarily rural, lower socio-economic status, Hispanic and Native American districts that seldom have such STEM educational opportunities. The Colorado Consortium for Earth and Space Science Education (CCESSE) will show that increasing the quality of science, technology, engineering, and mathematics (STEM) education is not only a NASA goal set at the national level and a state and local priority, but is the underlying core competency of our organization as well. As an integral part of our Challenger Reach 2 U proposal to motivate interest in STEM curriculum and to strengthen the Nation's future workforce, we will thoroughly train teachers of these students to be more comfortable with technology and more prepared to deliver motivational STEM lessons, leaving an educational legacy that will greatly outlive the life of this grant. We will provide these students with cross-curricular preparatory lessons which will culminate with an exciting simulated space mission delivered in their own classrooms and moderated by a "NASA" mission director at our Center. With the help of the NASA grant, all of these services will be provided at no cost to the schools.
The goal of this outreach program was for Chemistry at the Space-Time (CaSTL) limit to partner with the Boys and Girls Club (BGC) of Santa Ana, CA to increase their participants' interest, enthusiasm and learning outcomes in Science Technology Engineering and Math (STEM) fields, through the development of science and chemistry hands-on lessons. The Boys and Girls Club of Santa Ana serves nearly 2,700 participants each day at six sites. Ninety percent of their participants identify as Hispanic/Latino and 93% are on free or reduced lunch. Although the Boys and Girls Club offers limited STEM activities, they agreed to partner with CaSTL, a UC-Irvine NSF-funded Center for Chemical Innovation, to expand their STEM ISE activities. CaSTL, in close collaboration with both the California Science Project of Irvine (CSPI), developed 24 science lesson plans that engage participants in high-level, hands-on, and interactive lessons that expose program participants to the visualization of chemistry and physics, based on CaSTL's mission. All lessons align with the California Science Standards, are highly interactive, and do not mimic the school day. These lessons compliment the state standards, but go much further in providing the participants experimental, hands-on activities that they often do not receive in their schools, due to budget, space and time restrictions. CaSTL faculty and graduate students ensured that the lens through which CaSTL research occurs was clearly represented in the lessons. CaSTL graduate students developed one of the lessons and kit and taught the spectroscopy lesson at the club.
Concord Evaluation Group (CEG) conducted an evaluation of the Spyhounds pilot test in October-December 2011. The goal of the evaluation was to assess the online resources for appeal and interest, as well as to provide WGBH with data on how a full-scale year-long project could be structured. CEG recruited a national sample of 5-8 year old children to participate in the pilot test. We conducted a pre-test survey to measure science-related knowledge (kids only), attitudes and interest (parents and kids). We then invited families to use the online resources during the pilot test and surveyed the
The Lost Ladybug Project (LLP) is a Cornell University citizen science project that connects science to education by using ladybugs to teach non-scientists concepts of biodiversity, invasive species, and conservation. The project has successfully engaged thousands of children (ages 5-11) in collecting field data on ladybugs and building a ladybug biology database that is useful to scientists. It has also reached 80,000 people over the Internet. The goal of the project is to promote lifelong appreciation of biodiversity and science, and provide scientists with data on the changing distribution and abundance of ladybug species across the country. The current project is broadening the Lost Ladybug Project's reach geographically, culturally, demographically, and contextually by creating new tools and materials for the website, and forging new connections with (1) youth groups, (2) science centers, community centers, botanical gardens, nature centers, and organic farms, (3) adults, (4) Native Americans, and (5) Spanish-speakers. The expanded project could potentially involve tens of thousands of new individuals in ladybug monitoring research. An evaluation study is measuring the impacts of the expansion on new participants' knowledge, skills, attitudes, interests, and behavior. The Lost Ladybug Project has been important in advancing scientific discovery and building scientific knowledge. Data collected by the project's volunteers have improved scientists' understanding of (1) ladybug species presence/absence, (2) shifts in ladybug species composition, (3) shifts in ladybug species ranges, and (4) change in ladybug body size and spot number. Evaluation data show that the project has a broad audience reach and is achieving its learning goals for adults and children. Broadening the project's reach will further increase the project's importance to ecology, conservation biology and biodiversity research, as well as education research.
This two-year project is communicating the results of scientific discoveries produced by an on-going LTER (Long-term Ecological Research) project devoted to understanding the Everglades ecosystem. Specifically, Dr. Heithaus is capitalizing on the discoveries funded through 0620409 (Coastal Oligotrophic Ecosystems Research) about the role of large-bodied, top predators in the Everglades, including bull sharks (Carcharhinus leucas) and American alligators (Alligator mississippiensis). The STEM content of this project is biology, in particular ecology, the environment, and conservation. These results are being communicated via: (1) multimedia exhibit presentations at multiple museums and nature centers in southern Florida, primarily the Museum of Discovery and Science (MODS), located in Ft. Lauderdale near the Everglades and (2) online dissemination of mini-documentaries and other educational components at social media websites and the LTER web site. The target audience for the museum exhibit components includes learners from diverse cultural backgrounds, such as urban family groups reflecting the demographics of southern Florida. This project will also develop a documentary about Everglades ecology that is planned for dissemination on a cable TV channel devoted to natural history. In order to link with formal education, related educational deliverables are being produced for use in science classroom settings (grades 4 through 12) that are aligned with the state science standards and benchmarks. Formative assessment conducted by museum staff and university students will evaluate learning outcomes as they relate to STEM content learning goals. After the two-year funding period, the science learning opportunities produced from the current Communicating Research to Public Audiences (CRPA) project will be sustained as the exhibit travels to other venues and as web deliverables are accessed on-line.
Michigan Technological University will collaborate with David Heil and Associates to implement the Family Engineering Program, working in conjunction with student chapters of engineering societies such as the American Society for Engineering Education (ASEE), the Society of Hispanic Professionals (SHP) and a host of youth and community organizations. The Family Engineering Program is designed to increase technological literacy by introducing children ages 5-12 and their parents/caregivers to the field of engineering using the principles of design. The project will reach socio-economically diverse audiences in the upper peninsula of Michigan including Native American, Hispanic, Asian, and African American families. The secondary audience includes university STEM majors, informal science educators, and STEM professionals that are trained to deliver the program to families. A well-researched five step engineering design process utilized in the school-based Engineering is Elementary curriculum will be incorporated into mini design challenges and activities based in a variety of fields such as agricultural, chemical, environmental, and biomedical engineering. Deliverables include the Family Engineering event model, Family Engineering Activity Guide, Family Engineering Nights, project website, and facilitator training workshops. The activity guide will be pilot tested, field tested, and disseminated for use in urban, suburban, and rural settings. Strategic impact will result from the development of content-rich engineering activities for families and the dissemination of a project model that incorporates the expertise of engineering and educational professionals at multiple levels of implementation. It is anticipated that 300 facilitators and 7,000-10,000 parents and children will be directly impacted by this effort, while facilitator training may result in more than 27,000 program participants.
DATE:
-
TEAM MEMBERS:
Neil HutzlerEric IversenChristine CunninghamJoan ChaddeDavid Heil
The Oregon Museum of Science and Industry (OMSI), in partnership with the J. Craig Venter Institute (JCVI), proposes to develop the Zoo in You: Exploring the Human Microbiome, a 2,000 square foot bilingual (English and Spanish) traveling exhibition for national tour to science centers, health museums, and other relevant venues. The exhibition will engage visitors in the cutting edge research of the National Institutes of Health's (NIH) Human Microbiome Project (HMP) and explore the impact of the microbiome on human health. To enrich the visitor experience, the Zoo in You project will also produce an interactive bilingual website and in-depth programs including science cafes and book groups for adult audiences. JCVI will provide its expertise and experience as a major site for HMP genomics research to the project. In addition, advisors from the Oregon Health & Science University, Multnomah County Library, the Multnomah County Health Department, ScienceWorks Hands-On Museum, Science Museum of Minnesota, and other experts will guide OMSI's development of exhibits and programs. The Institute of Learning Innovation in collaboration with OMSI will evaluate the exhibits, programs, and website. Front-end, formative, remedial, and summative evaluation will be conducted in English and Spanish at OMSI, ScienceWorks, and tour venues. The exhibition's target audience is families and school groups with children in grades 4-12. Latino families are a priority audience and the project deliverables will be developed bilingually and biculturally. The Zoo in You will tour to three venues a year for a minimum of eight years. We conservatively estimate that over two million people will visit the exhibition during the national tour. This project presents a powerful opportunity to inform museum visitors about new discoveries in genomic research, to invite families to learn together, and to present and interpret health-related research findings for diverse audiences. PUBLIC HEALTH RELEVANCE (provided by applicant): Our research education program, the Zoo in You (ZIY): Exploring the Human Microbiome, is relevant to public health because it will inform exhibition visitors and program participants about the significant new research of the NIH's Human Microbiome Project (HMP). Visitors will make connections between basic research, human health, and their own personal experiences. The bilingual (English and Spanish) ZIY exhibits and programs will present research finding and public health information in enjoyable and engaging ways to reach diverse family and adult audiences.
Through "Addressing the Science of Really Gross Things: Engaging Young Learners in Biomedical Science Through a Fulldome Planetarium Show and Supporting Curricula," Morehead Planetarium and Science Center at the University of North Carolina at Chapel Hill, in close collaboration with NIH-funded researchers at the UNC and a leading children's book author, will develop an informal science education media project and a suite of hands-on, inquiry-based curricula based on the media project for use in science centers, museums and schools. This project will build the pipeline of future researchers and create awareness of NIH-funded research by generating interest and excitement among children age 9-13 in the health sciences and related careers and building their science content knowledge. To achieve the objective, the investigators will develop a fulldome planetarium show; create correlating curricula for summer camps, afterschool programs, scout programs, science center field trips, science clubs and schools; and produce a DVD highlighting careers in the health sciences. In addition, the project will use several methods to target populations traditionally underrepresented in the biomedical fields, including featuring professionals from underrepresented populations in the multimedia and curricula products, making outreach visits to counties with large populations traditionally underrepresented in health science research careers, and producing a Spanish-language version of the products. The use of a known brand, "Grossology," is an innovative way to connect to children in the target age range and to encourage the informal science education community to embrace health-science content in their fulldome theaters. In addition, the project's hub-and-spoke approach further encourages adoption of this programming by providing informal science venues with both an engaging experience (hub) and the supporting curricula (the spokes) that is necessary to extend the show's potential for having significant educational impact. A strong project team maximizes the project's likelihood for success. The team includes fulldome producers and educators from Morehead and NIH-funded researchers with expertise in appropriate science content areas. In addition, the investigators have created a network of consultants, advisory board members and evaluators that will create feedback loops designed to ensure high-quality, scientifically-accurate, educationally-effective products. The investigators will use a combination of free and revenue-based dissemination strategies to ensure that the products of this award are broadly distributed. These strategies hold significant promise for creating broad use of this project's products in the nation's science centers, museums and classrooms.