Data science is ever-present in modern life. The need to learn with and about data science is becoming increasingly important in a world where the quantity of data is constantly growing, where one’s own data are often being harvested and marketed, where data science career opportunities are rapidly increasing, and where understanding statistics, data sources, and data representation is integral to understanding STEM and the world around us. Museums have the opportunity to play a critical role in introducing the public to data science concepts in ways that center personal relevance, social connections and collaborative learning. However, data science and statistics are difficult concepts to distill and provide meaningful engagement with during the brief learning experiences typical to science museums. This Pilot and Feasibility study brings together data scientists, data science educators, and museum exhibit designers to consider these questions:
What are the important data science concepts for the public to explore and understand in museum exhibits?
How can museum exhibits be designed to support visitors with diverse backgrounds and experiences to engage with these data science concepts?
What principles can shape these designs to promote broadening participation in data science specifically and STEM more broadly?
This Pilot and Feasibility project combines multidisciplinary expert convening, feasibility testing, and early exploratory prototyping around the focal topic of data science exhibits. Project partners, TERC, the Museum of Science, Boston, and The Tech Interactive in San Jose will engage in an iterative process to develop a theoretical grounding and practical guidance for museum practitioners. The project will include two convenings, bringing together teams of experts from the fields of data science, data science education and museum exhibit design. Prior to the first convening, an initial literature summary and a survey of convening participants will be conducted, culminating in a preliminary list of big ideas about data science. Periodically, participants will have the opportunity to rank, annotate and expand this list, as a form of ongoing data collection. During the convenings, participants will explore the preliminary list, share related work from the three disciplines, engage with related data science activities in small groups, and work together to build consensus around promising data science topics and approaches for exhibits. Participant evaluation will allow for iterative improvement of the convenings and the capture of missed points or overlooked topics. After each convening, museum partners will create prototypes that respond to the convening conversations. Prototypes will be pilot tested (evaluated) with an intentionally recruited group of families that includes both frequent visitors and those who are less likely to visit the museum; diversity in terms of race, languages and dis/ability will be reflected in selection. Pilot data collection will consist of structured observations and interviews. Results from the first round of prototyping will be shared with convening participants as a way to modify the list of big ideas and to further interrogate the feasibility of communicating these ideas in an exhibit format. Results from the convenings and from both rounds of prototyping will be combined in a guiding document that will be shared on all three partner websites, and more broadly with the informal STEM learning field. The team will also host a workshop for practitioners interested in designing data science exhibits, and present at a conference focused on museum exhibits and their design.
Computing and computational thinking are integral to the practice of modern science, technology, engineering, and math (STEM); therefore, computational skills are essential for students' preparation to participate in computationally intensive STEM fields and the emerging workforce. In the U.S., Latinx and Spanish speaking students are underrepresented in computing and STEM fields, therefore, expanding opportunities for students to learn computing is an urgent need. The Georgia Institute of Technology and the University of Puerto Rico will collaborate on research and development that will provide Latinx and Spanish speaking students in the continental U.S. and Puerto Rico, opportunities to learn computer science and its application in solving problems in STEM fields. The project will use a creative approach to teaching computer science by engaging Latinx and Spanish speaking students in learning how to code and reprogram in a music platform, EarSketch. The culturally relevant educational practices of the curriculum, as a model for informal STEM learning, will enable students to code and reprogram music, including sounds relevant to their own cultures, community narratives, and cultural storytelling. Research results will inform education programs seeking to design culturally authentic activities for diverse populations as a means to broaden participation in integrated STEM and Computing. This Broad Implementation project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments, including multiple pathways for broadening access to and engagement in STEM learning, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
As part of the technical innovation of the project, the EarSketch platform will be redesigned for cultural and linguistic authenticity that will include incorporating traditional and contemporary Latin sound beats and musical samples into the software so that students can remix music and learn coding using sounds relevant to their cultures; and developing a Spanish version of the platform, with a toggle to easily switch between English and Spanish. Investigators will also develop an informal STEM curriculum using best practices from Culturally Relevant Education and Cultural Sustaining Pedagogy that provides authentic, culturally and linguistically rich opportunities for student engagement by establishing direct and constant connections to their cultures, communities and lived experiences. The curriculum design and implementation team will work collaboratively with members of Latinx diverse cultural groups to ensure semantic and content equivalency across diverse students and sites. Validating the intervention across students and sites is one of the goals of the project. The model curriculum for informal learning will be implemented as a semester long afterschool program in six schools per year in Atlanta and Puerto Rico, and as a one-week summer camp twice in the summer. The curricular materials will be broadly disseminated, and training will be provided to informal learning practitioners as part of the project. The research will explore differences in musical and computational engagement; the interconnection between music and the computational aspects of EarSketch; and the degree to which the program promotes cultural engagement among culturally and linguistically heterogenous groups of Latinx students in Atlanta, and more culturally and linguistically homogenous Latinx students in Puerto Rico. Investigators will use a mixed method design to collect data from surveys, interviews, focus groups, and computational/musical artifacts created by students. The study will employ multiple case study methodology to analyze and compare the implementation of the critical components of the program in Puerto Rico and Atlanta, and to explore differences in students' musical and computational thinking practices in the two regions. Results from the research will determine the impact of the curriculum on computer science skills and associated computational practices; and contribute to the understanding of the role of cultural engagement on educational outcomes such as sense of belonging, persistence, computational thinking, programming content knowledge and computer science identity. Results will inform education programs designing culturally authentic and engaging programming for diverse populations of Latinx youths.
DATE:
-
TEAM MEMBERS:
Diley HernandezJason FreemanDouglas EdwardsRafael Arce-NazarioJoseph Carroll-Miranda