Refugee youth are particularly vulnerable to STEM disenfranchisement due to factors including limited or interrupted schooling following displacement; restricted exposure to STEM education; and linguistic, cultural, ethnic, socioeconomic, and racial minority status. Refugee youth may experience a gap in STEM skills and knowledge, and a conflict between the identities necessary for participation in their families and communities, and those expected for success in STEM settings. To conduct research to better understand these challenges, an interrelated set of activities will be developed. First, youth will learn principles of physics and computing by participating in cosmic ray research with physicists using an instructional approach that builds from their home languages and cultures. Then youth periodically share what they are learning in the cosmic ray research with their parents, siblings, and science teachers at family and community science events. Finally, youth conduct reflective research on their own STEM identity development over the course of the project. Research on learning will be conducted within and across these three strands to better understand how refugee youth develop STEM-positive identities. This project will benefit society by improving equity and diversity in STEM through (1) creating opportunities for refugee youth to participate in physics research and to develop computing skills and (2) producing knowledge on STEM identity development that may be applied more broadly to improve STEM education. Deliverables from this project include: (a) research publications on STEM identity and learning; (b) curriculum resources for teaching physics and computing to multilingual youth; (c) an online digital storytelling exhibit offering narratives about belonging in STEM research which can be shared with STEM stakeholders (policy makers, scientists, educators, etc.); and (d) an online database of cosmic ray data which will be available to physicists worldwide for research purposes. This Innovations in Development proposal is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants.
This program is designed to provide multiple contexts, relationships, and modes across and within which the identity work of individual students can be studied to look for convergence or divergence. To achieve this goal, the research applies a linguistic anthropological framework embedding discourse analysis in a larger ethnography. Data collected in this study include field notes, audio and video recordings of naturalistic interactions in the cosmic ray research and other program activities, multimodal artifacts (e.g., students' digital stories), student work products, interviews, and surveys. Critically, this methodology combines the analysis of identity formation as it unfolds in moment-to-moment conversations (during STEM learning, and in conversations about STEM and STEM learning) with reflective tasks and the production of personal narratives (e.g., in digital stories and interviews). Documenting convergence and divergence of STEM identities across these sources of data offers both methodological and theoretical contributions to the field. The research will offer thick description of the discursive practices of refugee youth to reveal how they construct identities related to STEM and STEM disciplines across settings (e.g., during cosmic ray research, while creating digital stories), relationships (e.g., peer, parent, teacher), and the languages they speak (e.g., English, Swahili). The findings will be of potential value to instructional designers of informal learning experiences including those working with afterschool, museums, science centers and the like, educators, and scholars of learning and identity.
This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Tino NyaweloJohn MatthewsJordan GertonSarah Braden
This award takes an innovative approach to an ongoing, pervasive, and persistent societal issue: women are still drastically underrepresented in computing careers. This project targets middle school-aged girls because it is a time when many of them lose interest and confidence in pursuing technical education and computing careers. This project will design, develop, and deploy a one-week experience focused on middle school girls that targets this issue with a novel combination of teaching techniques and technology. The project will use wearable computing devices to support girls' social interactions as they learn computing and solve technical challenges together. The goals of the project are to raise interest, perceived competence, and involvement in the computational ability of girls. Additionally, the project aims to increase a sense of computational community for girls that makes pursuing computational skills more relevant to their identities and lives, and that helps continued participation in computing. The project will deploy a one-week experience four times per year with a socioeconomically diverse range of campers. The project will also develop a 'program in a box' kit that can be broadly used by others wishing to deliver a similar experience for girls.
The planned research will determine if a one-week experience that uses social wearable construction in the context of live-action role play can use the mediating process of computational community formation to positively impact middle school girls' engagement with and interest in computation. Computational community is defined as girls engaging together in the process of learning computation, trading resources and knowledge, and supporting growth. Research participants will include 100 6th to 9th-grade girls. At least 75% of the participants will be either low income, first-generation college-bound, or underrepresented in higher education. Students will be recruited through the longstanding partnerships with title one schools in the Salinas Valley, the Educational Partnership Center, and in the Pajaro Valley Unified School district, where 82% of the students are Hispanic/Latinx, 42% are English Learners, and 73% are eligible for free or reduced lunch. The research questions are: 1) Does the proposed experience increase girls' self-reported competence, self-efficacy, and interest in computational skills and careers? and 2) Will the proposed experience lead to activity-based evidence of learning and integration of computational skills at the group social level? The project will use a mixed-methods, design-based research approach which is an iterative design process to rapidly collect and analyze data, and regularly discuss the implications for practice with the design team. Data will be collected using observations, interviews, focus groups, surveys, and staff logs. Quantitative data will be analyzed using frequencies, means, and measures of dispersion will be applied to survey data from both time points. Pearson correlation coefficients will be used to describe the bivariate relationship between continuous factors. ANOVAs will assess whether there are significant differences in continuous measures across groups. Qualitative data will be analyzed using a constant comparison method.
This Innovations in Development award is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The WGBH Educational Foundation together with the Association of Computing Machinery (ACM) and dozens of partners, proposes a major new initiative to reshape the image of computing among college-bound high school students, with a special focus on Latina girls and African-American boys. Image is seen as an important factor in the lack of interest in computing majors among high school and college students, who often see computer scientists as geeks and nerds with boring jobs and equally boring lives. Latina girls and African-American boys--among the most underrepresented groups in computing--represent particularly important and challenging audiences. The New Image for Computing project will research and design a "communications make-over"--a new set of messages that will accurately and positively portray the field and will be widely tested for their emotional appeal to and intellectual connection with the targeted audiences. Experienced marketing professionals will help create the messaging campaign using proven marketing and communications strategies. WGBH, a leading producer of programming for public television and non-broadcast educational media, is uniquely positioned to lead this initiative, as they have a current, similar project called Engineer Your Life that aims to encourage academically prepared high school girls to consider engineering as an attractive option for both post-secondary education and as a career choice.
WNET is producing "The Human Spark," a multimedia project that includes a four-part television series (4 x 60 min) for national primetime broadcast on PBS, innovative outreach partnerships with museums, an extensive Web site and outreach activities, including a Spanish-language version and companion book. Hosted by Alan Alda, "The Human Spark" will explore the intriguing questions: What makes us human? Can the human spark be found in the differences between us and our closest genetic relative -- the great apes? Is there some place or process unique to the human brain where the human spark resides? And if we can identify it, could we transfer it to machines? The programs will explore these questions through presenting cutting-edge research in a number of scientific disciplines including evolution, genetics, cognitive neuroscience, behavioral science, anthropology, linguistics, AI, robotics and computing. The series will highlight opposing views within each field, and the interdisciplinary nature of science, including its intersection with the humanities. The series will develop a new innovative format, the "muse concept", which involves pairing the host with a different scientific expert throughout each program. The outreach plan is being developed with a consortium of four leading science museums, American Museum of Natural History in New York, Museum of Science in Boston, The Exploratorium in San Francisco, and the Fort Worth Museum of Science and History, paired with their respective local public television stations. An additional six museums and local broadcasters will be chosen through an RFP process to develop local initiatives around the series. Multimedia Research and Leflein Associates will conduct formative as well as summative evaluations of the series and web.
DATE:
-
TEAM MEMBERS:
William GrantJared LipworthGraham CheddBarbara Flagg