The Sustainability Teams Empower and Amplify Membership in STEM (S-TEAMS), an NSF INCLUDES Design and Development Launch Pilot project, will tackle the problem of persistent underrepresentation by low-income, minority, and women students in STEM disciplines and careers through transdisciplinary teamwork. As science is increasingly done in teams, collaborations bring diversity to research. Diverse interactions can support critical thinking, problem-solving, and is a priority among STEM disciplines. By exploring a set of individual contributors that can be effect change through collective impact, this project will explore alternative approaches to broadly enhance diversity in STEM, such as sense of community and perceived program benefit. The S-TEAMS project relies on the use of sustainability as the organizing frame for the deployment of learning communities (teams) that engage deeply with active learning. Studies on the issue of underrepresentation often cite a feeling of isolation and lack of academically supportive networks with other students like themselves as major reasons for a disinclination to pursue education and careers in STEM, even as the numbers of underrepresented groups are increasing in colleges and universities across the country. The growth of sustainability science provides an excellent opportunity to include students from underrepresented groups in supportive teams working together on problems that require expertise in multiple disciplines. Participating students will develop professional skills and strengthen STEM- and sustainability-specific skills through real-world experience in problem solving and team science. Ultimately this project is expected to help increase the number of qualified professionals in the field of sustainability and the number of minorities in the STEM professions.
While there is certainly a clear need to improve engagement and retention of underrepresented groups across the entire spectrum of STEM education - from K-12 through graduate education, and on through career choices - the explicit focus here is on the undergraduate piece of this critical issue. This approach to teamwork makes STEM socialization integral to the active learning process. Five-member transdisciplinary teams, from disciplines such as biology, chemistry, computer and information sciences, geography, geology, mathematics, physics, and sustainability science, will work together for ten weeks in summer 2018 on real-world projects with corporations, government organizations, and nongovernment organizations. Sustainability teams with low participation by underrepresented groups will be compared to those with high representation to gather insights regarding individual and collective engagement, productivity, and ongoing interest in STEM. Such insights will be used to scale up the effort through partnership with New Jersey Higher Education Partnership for Sustainability (NJHEPS).
DATE:
-
TEAM MEMBERS:
Amy TuiningaAshwani VasishthPankaj Lai
Physical science and engineering remain the least diverse of all STEM fields---with regard to women, underrepresented minorities, and persons with disabilities---across all levels of STEM education and training. SCI-STEPS is an NSF INCLUDES Design and Development Launch Pilot that will address this persistent challenge by developing a complete end-to-end pipeline (or system of pathways) from the beginning of college to the PhD, and then into the workforce. Many isolated efforts to broaden participation have shown promise, but they have not produced big enough impact. SCI-STEPS represents a concerted set of coordinated interventions---consciously facilitated, systemically linked, and purposefully disseminated. SCI-STEPS represents a broad regional network among major research universities, Historically Black Colleges and Universities, comprehensive universities, community colleges, national labs, and major scientific organizations. The goal of the network is to ensure that underrepresented individuals in the physical sciences and engineering can get from their starting point in STEM higher education---freshmen at 2-year or 4-year college---through the higher education pathways leading to an appropriate terminal degree and employment in the STEM workforce.
Women, underrepresented minorities, and persons with disabilities collectively represent the majority of college-age individuals entering higher education with an expressed interest in physical science and engineering. A growing body of research indicates that academic and social integration may be even more influential than academic abilities for retention of students. Thus, interventions aimed at stemming the losses of these individuals must ultimately be aimed at changing the system---including unwelcoming institutional climates, racial/ethnic/gender stereotyping, a lack of mentors with whom to identify, and evaluation methods that emphasize conformity over individual capabilities---rather than changing the individual. The SCI-STEPS pilot focuses effort on institutional readiness for implementation of best practice interventions at four key junctures: (i) college freshman to sophomore; (ii) undergraduate to graduate; (iii) PhD to postdoc; and (iv) postdoc to workforce.The pilot will proceed in three steps: (1) a planning phase, (2) development of an initial end-to-end pathways model with four Juncture Transition teams, and (3) scale-up of the SCI-STEPS "network of networks" with all initial partners. By addressing these objectives through a collective impact framework and embedded research, this pilot will demonstrate how best-practice interventions at each pathway juncture can be dovetailed and scaled up across a broad range of institutional types and across a large but distinct geographical area. Addressing these objectives will thus also serve to advance Broadening Participation efforts at a national scale, by suggesting the forms of institutional partnerships and best-practices that may inform other alliances in other STEM disciplines and/or different regional areas.
DATE:
-
TEAM MEMBERS:
Keivan StassunNicole JosephKelly Holley-BockelmannWilliam RobinsonRoger Chalkley
This study sought to understand what motivates students at the high school and early college level to choose physics. It explored students’ expectations of their study of physics and their priorities for future careers. The researchers intended to contribute strategies to increase the number of females who complete university physics degrees. They also hoped to show that a wider range of perspectives needs to be represented among physics practitioners.
This project is aimed at perfecting and testing a new instructional method to improve the effectiveness of introductory physics teaching. the methods has two chief characteristics: 1) a systematic challenge to common sense misconceptions about the physical world, and 2) an emphasis on models and modeling as basic to physical understanding. Two versions of the method will be tested. The first version is designed especially for high school physics. It emphasizes student development of explicit models to interpret laboratory activities. After an initial test, this version will be taught to high school physics teachers in a summer Teacher Enhancement Workshop, and its effect on their subsequent teaching will be evaluated. Teachers with weak as well as strong backgrounds will be included. A special effort will be made to include females and minorities. The second version will be tested in a special college physics course designed to prepare students with weak backgrounds for a standard calculus based physics course. It emphasizes modeling techniques in problem solving. This project is jointly supported by the Division of Materials development, Research and Informal Science Education and the Division of Teacher Preparation and Enhancement.
John Carroll University, Cleveland's International Women's Air and Space Museum and Cleveland Public Schools are partnering in a three-year project to provide a cross-age, collaborative exhibit development experience to increase young peoples' science understanding and interest in science and teaching careers. The program exposes 120+ high school and undergraduate women to the skills of educational program planning and implementation. Content includes science, technology, engineering and math related to flight, and the history and role of women in flight related careers. The project proposes a highly supportive learning environment with museum, science and education experts working alongside students at secondary and undergraduate levels to design exhibits that will meet the interest and needs of the museum, and the young children and families from Cleveland schools who visit. Through qualitative and quantitative methods, the evaluation will measure change in participant career interests, content understanding and perception of science, technology, engineering and math subjects, and skill development in presenting these concepts to public audience members. Public and professional audience experiences will also be evaluated. More than nine hundred local elementary school age children, their families and 15,000 general public audience members will participate in student-designed, museum-based exhibits and programs. Deliverables include a model for university/museum partnerships in providing exhibit development and science learning experiences, three team-developed permanent exhibits about flight and women in science, a set of biographies about women and flight in DVD format and three annual museum based community events. The model program will be informed by national advisors from museum/university partners across the United States who will attend workshops in connection with the projects public presentations in years one and two. These meetings will both provide opportunities to reflect on the program progress and to develop new strategies in the evolution of the program design. Workshop participants will develop plans to implement similar programs in their home locations, impacting another layer of public audiences. The transferability of the model to these new sites will be measured in year three of the proposal. An additional 25,000 participants are expected to be impacted in the five years following the grant period. Beyond the implementation sites, the model's impact will be disseminated by the PI and participants in the program through peer reviewed journals and presentations at national conferences.