Tornado Alley is a large-format 2D/3D film and comprehensive outreach program exploring the science behind severe weather events. The project focuses on cutting-edge developments in the fields of meteorology and earth science, demonstrating weather monitoring technologies. The project spotlights the current research of the VORTEX 2 (V2) project--the most ambitious effort ever to understand the origins, structure and evolution of tornadoes. The principle target audiences are science museum audiences, with additional special attention to under-served, rural mid-western communities, which will be served by digital 3D screenings. The film will be produced by Graphic Films and Giant Screen Films and distributed by Giant Screen Films. The Franklin Institute will create and manage outreach to professional audiences. Informal Learning Solutions will conduct formative evaluation; RMC Research Corporation will conduct summative evaluation of the project. The film, produced by Paul Novros (PI) and directed by Sean Casey, will collaborate closely with the V2 team, led by Dr. Josh Wurman, and consult with the project advisors to assure clarity and accuracy of the science being presented. A distance-learning initiative to serve educators--both formal and informal--will be managed by Karen Elinich (co-PI) of The Franklin Institute. The project's innovative outreach strategies leverage the mobility of the tornado intercept vehicle (TIV) built by Sean Casey, and the Doppler on Wheels and MGAUS (weather balloon vehicles) to bring scientists and weather-monitoring technology into direct contact with audiences. Outreach to underserved audiences, especially rural audiences, will provide opportunities for interactions with V2 PIs and their students, who serve as role models in science careers. In addition, cyber infrastructure will allow groups of educators to interact remotely with V2 researchers and experience visualizations of weather data. The film and ancillary materials will be translated into Spanish. The project serves as a model for the dissemination of the methods and results of a specific major NSF hard-science research endeavor to the general public through ISE products and activities. The goal of the project is for the audience to increase their knowledge and understanding of the scientific process, learn what meteorologists do, what technologies are used in meteorology and weather science and the factors and forces in meteorological events. It is intended that young audience members will also develop and interest in weather science and potential careers in science and engineering. In the first five years of the film\'s release, the audience is anticipated at 7 million plus. In addition, the live outreach events are expected to engage approximately 40,000-60,000 individuals.
Mission to Mars engages 6th-8th grade students in the science, engineering and careers related to Mars exploration. The program is led by the Museum of Science and Industry, Chicago, and includes as partners Challenger Learning Centers in Woodstock, IL, Normal IL and three NASA Centers (Jet Propulsion Laboratory, Marshall Space Flight Center, and Johnson Space Center). The project aims to:
Link, via videoconference, urban and rural middle school students from low income communities in an exploration of space science
Develop and launch programs that showcase NASA Center research
Enrich middle school curricula and promote learning about NASA’s space missions with experiences that inspire youth to pursue in NASA-related STEM careers.
Programs and products produced include:
3 videoconference program scenarios that highlight research being conducted at NASA Centers
Pre- and post-event curriculum materials designed for middle school classrooms
Teacher professional development workshops
Communication support for NASA professionals
iPad apps utilized during the program
Since the program launched five years ago, Mission to Mars has served 7,676 students. MSI seeks to provide opportunities for all learners, and works to remove barriers to participation in high-quality science learning experiences. Mission to Mars allows MSI to engage more Chicago Public Schools (where 86% of students are economically disadvantaged) in real and relevant science experiences that may lead to STEM careers.
As MSI’s CP4SMP grant comes to an end, the Museum has committed to continued delivery of the program through 2 Mission to Mars Learning Labs, offered to 6-8th grade school groups visiting on field trips. Live videoconferencing with JPL and Johnson will occur during roughly half of the sessions. Our Challenger Learning Center partners will integrate Mission to Mars activities, materials and iPad apps into their own Mars-themed programs. Together these efforts extend the transformative hands-on science experiences developed under the Mission to Mars grant to a whole new audience of middle school students and teachers.
Journey into Space (JIS) is designed to improve student, educator, and general public understanding of earth/space science and its relationship to NASA goals and objectives through the use of a traveling GeoDome (inflatable planetarium) and engaging supporting programming at The Journey Museum. The Museum collaborates with area colleges, school districts, K-12 educators, youth serving organizations, astronomical affiliations, and others. The overall goal of JIS is to improve student, educator, and general public understanding of STEM and its relationship to NASA goals and objectives. JIS objectives are: 1) To increase student and public interest and awareness in STEM areas; 2) To increase student interest in pursuing STEM careers; 3) To improve teacher knowledge of NASA related science; 4) To increase teacher comfort level and confidence in teaching NASA related science in their classrooms; 5) To increase collaboration between informal and formal science educators; 6) To increase student and public understanding of Plains Indians ethno astronomy; and 7) To increase museum visitors’ interest and understanding of NASA related science. The Museum produced 2 films (“Cradle of Life”, “Looney Moons”) that are offered daily, 4 recurring monthly programs (Final Frontier Friday, Amazing Science, SciGirls that became Science Explorer’s Club, and Black Hills Astronomical Society meetings), summer robotics classes and teachers’ workshops, annual Earth Science Day, in addition to the GeoDome programming that has toured the region including presentations in the three poorest counties in the United States. The ethno-astronomy is underway in partnership with Oglala Lakota College and South Dakota Space Grant Consortium.
The MyDome project will bring 3D virtual worlds for group interaction into planetaria and portable domes. Advances in computing have evolved the planetarium dome experience from a star field and pointer presentation to a high-resolution movie covering the entire hemispherical screen. The project will further transform the dome theater experience into an interactive immersive adventure. MyDome will develop scenarios in which the audience can explore along three lines of inquiry: (1) the past with archeological reconstructions, (2) the present in a living forest, and (3) the future in a space station or colony on Mars. These scenarios will push the limits of technology in rendering believable environments of differing complexity and will also provide research data on human-centered computing as it applies to inquiry and group interactions while exploring virtual environments. The project proposes to engage a large portion of the population, with a special emphasis on the underserved and under-engaged but very tech-savvy teenage learner. Research questions addressed are: 1. What are the most engaging and educational environments to explore in full-dome? 2. What on-screen tools and presentation techniques will facilitate interactions? 3. What are the limitations for this experience using a single computer, single projector mirror projection system as found in the portable Discovery Dome? 4. Which audiences are best served by exploration of virtual hemispherical environments? 5. How large can the audience be and still be effective for the individual learner? What techniques can be used to provide more people with a level of control of the experience and does the group interaction enhance or diminish the engagement of different individuals? 6. What kind of engagement can be developed in producing scientific and climate awareness? Does experiencing past civilizations lead to more interest in other cultures? Does supported learning in the virtual forest lead to greater connection to and understanding of the real forest? Does the virtual model space experience excite students and citizens about space exploration or increase the understanding of the Earth's biosphere? The broader impacts of the project are (1) benefits to society from increasing public awareness and understanding of human relationships with the environment in past civilizations, today?s forests and climate change, and potential future civilizations in space and on Mars; (2) increasing the appeal of informal science museums to the tech-savvy teenage audience, and (3) significant gains in awareness of young people in school courses and careers in science and engineering. The partners represent a geographically diverse audience and underserved populations that include rural (University of New Hampshire), minority students (Houston Museum of Natural Science) and economically-distressed neighborhoods (Carnegie Museum of Natural History). Robust evaluation will inform each program as it is produced and refined, and will provide the needed data on the potential for learning in the interactive dome environment and on the optimal audience size for each different type of inquiry.
DATE:
-
TEAM MEMBERS:
Annette SchlossKerry HandronCarolyn Sumners
Maine is a rural state with unequal access to computers and information technology. To remedy this, the Maine laptop program supplies iBooks to every seventh and eighth grade student in the state. The goal of EcoScienceWorks is to build on this program and develop, test and disseminate a middle school curriculum featuring computer modeling, simple programming and analysis of GIS data coupled with hands-on field experiences in ecology. The project will develop software, EcoBeaker: Maine Explorer, to stimulate student exploration of information technology by introducing teachers and students to simple computer modeling, applications of simulations in teaching and in science, and GIS data manipulation. This is a three-year, comprehensive project for 25 seventh and eighth grade teachers and their students. Teachers will receive 120 contact hours per year through workshops, summer sessions and classroom visits from environmental scientists. The teachers' classes will field test the EcoScienceWorks curriculum each year. The field tested project will be distributed throughout the Maine laptop program impacting 150 science teachers and 17,000 middle school students. EcoScienceWorks will provide middle school students with an understanding of how IT skills and tools can be used to identify, investigate and model possible solutions to scientific problems. EcoScienceWorks aligns with state and national science learning standards and integrates into the existing middle school ecology curriculum. An outcome of this project will be the spread of a field tested IT curriculum and EcoBeaker: Maine Explorer throughout Maine, with adapted curriculum and software available nationally.
DATE:
-
TEAM MEMBERS:
Walter AllanEric KlopferEleanor Steinberg
The purpose of this integrated cross media project is to build public knowledge and curiosity about energy science and policy, to encourage audience confidence in its abilities to understand energy related science, and to stimulate exchange between community-based experts. The deliverables include five hour-long radio programs focusing on the interconnected nature of waterways, climate systems, and energy sources; a digital journalism and social network site focusing on energy topics; partner-driven outreach with universities and local public radio stations; and a training workshop for ethnic media partners. The project targets public radio listeners, ethnic media readers, local urban and rural communities, and Internet users. Partner organizations include New American Media, a consortium of ethnic media producers, the University of Texas at Austin (which will provide content expertise as well as outreach assistance), local public radio stations, and scientific organizations. Intended impacts on the general audience include building their knowledge and interest in energy science and policy, and influencing their confidence in understanding energy science, technology and engineering, as well as empowering them to voice their opinions in energy policy discussions and to make changes in their lives that will support a sustainable energy future. It is estimated that five million people will access the radio programs and web content over the sustained life of the project. Professional audience impacts include building science journalism capacity and reciprocal relationships between general and ethnic news media, as well as stimulating exchange between subject experts (e.g., water engineers and geoscientists) and community experts (e.g., community organizers and backyard gardeners) who can inform energy reporting and open new areas of discussion in the energy debate. The evaluation plan uses both quantitative and qualitative data collection and quasi-experimental designs to examine the impact of this project on both public and professional audiences.
To address a lack of informal science education opportunities and to increase community capacity to support STEM education for their children, Washington State University's Yakima Valley/Tri Cities MESA program, the Pacific Science Center, and KDNA Educational Radio have developed a set of informal science initiatives that offer complementary learning opportunities for rural Latino families. The goal of this four-year program is to create a sustainable informal science infrastructure in southeastern Washington State to serve families, increase parental awareness, support and involvement in science education and ultimately increase the numbers of rural Latino youth pursuing STEM-related under graduate studies. This program is presented in English and Spanish languages in all of its interconnected deliverables: Two mobile exhibits, beginning with one focused on agricultural and environmental science developed by The Pacific Science (PCS) Center; Curriculum and training in agriculture, life sciences and facilitating learning; Curriculum and training for community members to provide support to parents in encouraging the academic aspirations of their children developed by PSC and MESA; 420 Youth and parents from the MESA program trained to interpret exhibits and run workshops, community festivals, family science workshops and Saturday programs throughout the community; Four annual community festivals, quarterly Family Saturday events, and Family Science Workshops reaching 20,000 people over the four-year project; Take home activities, science assemblies, a website and CDs with music and science programming for community events; A large media initiative including monthly one hour call-in radio programs featuring science experts, teachers, professionals, students and parents, 60-second messages promoting science concepts and resources and a publicity campaign in print, radio and TV to promote community festivals. These venues reach 12,500-25,000 people each; A program manual that includes training, curriculum and collaborative strategies used by the project team. Overall Accesso la Ciencia connects parents and children through fun community activities to Pasco School District's current LASER science education reform effort. This project complements the school districts effort by providing a strong community support initiative in informal science education. Each activity done in the community combines topics of interest to rural Latinos (agriculture for instance) to concepts being taught in the schools, while also providing tools and support to parents that increases their awareness of opportunities for their children in STEM education.
DATE:
-
TEAM MEMBERS:
James PrattD. Janae' LandisDonald LynchMichael Trevisan
This planning grant is designed to engage urban and rural families in science learning while piloting curriculum development and implementation that incorporates both Native and Western epistemologies. Physical, earth, and space science content is juxtaposed with indigenous culture, stories, language and epistemology in after-school programs and teacher training. Project partners include the Dakota Science Center, Fort Berthold Community College, and Sitting Bull College. The Native American tribes represented in this initiative involve partnerships between the Dakota, Lakota, Nakota, Hidatsa, Mandan, and Arikara. The primary project deliverables include a culturally responsive Beyond Earth Moon Module, teacher training workshops, and a project website. The curriculum module introduces students to the moon's appearance, phases, and positions in the sky using the Night Sky Planetarium Experience Station during programs at the Boys and Girls Club (Ft. Berthold Community College), Night Lights Afterschool program (Sitting Bull Community College), and Valley Middle School (UND and Dakota Science Center). Students also explore core concepts underlying the moon's phases and eclipses using the interactive Nature Experience Station before engaging in the culminating Mission Challenge activity in which they apply their knowledge to problem solving situations and projects. Fifteen pre-service and in-service teachers participate in professional development workshops, while approximately 300 urban and rural Native youth and family members participate in community programs. A mixed-methods evaluation examines the impact of Western and Native science on the learning of youth and families and their understanding of core concepts of science in a culturally responsive environment. The formative evaluation addresses collaboration, development, and implementation of the project using surveys and interviews to document participant progress and obtain input. The summative evaluation examines learning outcomes and partnerships through interviews and observations. Presentations at national conferences, journal publications, and outreach to teachers in the North Dakota Public School System are elements of the project's comprehensive dissemination plan. The project findings may reveal impacts on participants' interest and understanding of connections between Native and Western science, while also assessing the potential for model replication in similar locales around the country.
Goals: 1) Increase the number of Alaskans from educationally and/or economically disadvantaged backgrounds, particularly Alaska Natives, who pursue careers in health sciences and health professions and 2) Inform the Alaskan public about health science research and the clinical trial process so that they are better equipped to make healthier lifestyle choices and better understand the aims and benefits of clinical research. Objectives: 1) Pre-med Summer Enrichment program (U-DOC) at UAA (pipeline into college), 2) Statewide Alaska Student Scientist Corps for U-DOC, 3) students (pipeline into college), 4) Facility-based Student Science Guide program at Imaginarium Science Discovery Center, 5) Job Shadowing/Mentorship Program for U-DOC students and biomedical researchers, 6) Research-based and student-led exhibit, demonstration, and multi-media presentations, 7) Professional Development for educators, 8) North Star Website.