The Discovery Center at Murfree Spring, in partnership with six science centers and museums, will promote and invest in science education in rural communities with limited museum access. This coalition will work with two cohorts of rural school communities (12 total) and focus on engaging, learning from, and supporting rural school districts, teachers, families, and communities through relationship building, asset mapping, and the collaborative integration and implementation of museum resources. Additional activities include the production of publications, virtual presentations, and a virtual tool kit. The project will illustrate the ways in which museums can collaborate to support STEM and literacy at the K-2 level, enhance teacher self-efficacy, attitudes and beliefs, and engage family and community, strengthening services for Americans who live in the most rural areas.
ECHO, Leahy Center for Lake Champlain will increase its capacity to serve rural schools through programming opportunities under its STEM in Motion 2.0 program. In partnership with rural schools, they will conduct two year-long teacher institutes blending in-person and virtual professional development. They plan to develop a total of 270 in-person and virtual classroom STEM programs and produce 18 classroom curriculum kits and standard-activity aligned guides. As a result of STEM in Motion 2.0’s activities, the museum anticipate that 54 teachers will have additional capacity to deliver high-quality STEM learning experiences to K–5th grade students in underserved, rural communities.
This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).
Despite the rich scientific evidence of adaptations and their evolutionary basis, there are concerning public misconceptions about evolution, processes of natural selection, and adaptations in the biodiverse world. Such misconceptions begin early. Younger elementary school children are often resistant to the idea that one “kind” of animal could descend from a completely different kind of animal, and they see features as having always existed. Other misconceptions lead to an inaccurate belief that changes in individual organisms acquired in a lifetime are passed directly on to offspring or that entire populations transform as a whole. These cognitive biases and "intuitive” misunderstandings can persist into adulthood. This Innovations in Development project will counter that narrative through an informal science project focusing on the blue whale one of nature’s most spectacular stories of adaptation. It is a species that lives life at extremes: a long-distance migrator, a deep diver, an extravagant eater, the largest animal to ever exist. With its awe-inspiring size and rich mosaic of anatomical, physiological, and behavioral specializations, it serves as a bridge to an enriched understanding of universal concepts in elementary biology and can begin to dispel the deeply rooted misconceptions. The project deliverables include a giant screen film documenting the field work of research scientists studying the blue whales in the Indian Ocean and Gulf of Mexico; multi-platform educational modules and programs that will build on the blue whale content from the film for use in science center programs and rural libraries; and professional development webinars that will offer content utilization and presentation skills for ISE facilitators. Project partners include California Science Center, STAR Library Education Network, HHMI Tangled Bank Studios and SK Films.
The external evaluation studies will gather data from 20 participating rural libraries and 6 science museums. A formative evaluation of the film will be conducted in a giant screen theater setting with 75 families. After viewing a fine-cut version of the film they will complete age-appropriate post-viewing surveys on the film’s engagement, storytelling, content appeal and clarity, and learning value in communicating key science concepts. An external summative evaluation will include three studies. Study 1 will assess the implementation of the project at the 26 organizations, addressing the question: To what extent is the project implemented as envisioned in the libraries and science center settings? Baseline information will be collected, and later partners will complete post-grant surveys to report on their actual implementation of the project elements. In addition, the study will examine outcomes relating to professional development. Study 2 will be an evaluation of the film as experienced by 400 youth and parents in science centers and examining the question: To what extent does experiencing the film engage youth and parents and affect their interest, curiosity, and knowledge of blue whales, adaptations, and the scientific process? Study 3 will examine: To what extent and how does experiencing an educational module (virtual field trips, hands on activities, augmented reality) affect youth and parents’ interest, curiosity, and knowledge of adaptations and scientific process?
Although approximately one-quarter of U.S. students reside in rural communities, rural youth are fifty percent less likely to receive and engage in out-of-school STEM experiences than their urban counterparts. In addition, there has been significantly more investment in understanding and improving informal experiences in urban settings than in rural settings. As a result, there is less known about the characteristics of learning ecosystems and programs that support STEM learning for youth in informal contexts within rural communities. This Research in Service to Practice project aims to address this challenge by exploring the feasibility of a culturally relevant and sustaining STEM program designed specifically for rural youth and their families. Parents and caregivers play a critical role in fostering youths’ interests and persistence in STEM through their own engagement and by connecting them to STEM opportunities and STEM-related fields and career pathways. Through a partnership between the High Desert Museum in Oregon, the Institute for Learning Innovation, Maine Mathematics and Science Alliance, JKS Consulting, and three informal science education institutions, a year-long series of STEM-based workshops and experiences for youth and their families will be co-designed by members of the rural community, informal STEM educators, and STEM professionals and implemented within the rural communities of the participating informal science education institutions—Caddo Mounds State Historic Site Weeping Mary (TX), High Desert Museum (OR), Oregon Coast Aquarium, and The Wild Center (NY). Each series will reflect the cultural knowledge, connections, and resources specific to each rural community. In addition, the informal STEM educators and STEM professionals will receive training on facilitating the culturally sustaining workshops and experiences. Researchers at the Institution for Learning Innovation and the Maine Mathematics and Science Alliance together with the evaluator at JKS Consulting will employ a collaborative design-based research approach to identify and study the STEM learning practices and supports that occur within the program to promote youths’ interests and persistence in STEM. The findings will offer evidence-based insights to the field on how to better engage, reflect, and provide opportunities for diverse rural communities. Ultimately, this research has the potential to advance the current understanding thereby, strengthening rural STEM learning ecosystems and broadening STEM participation among youth in rural communities.
Over a four-year project duration, a collaborative design-based research approach will be employed to address the following research questions: (1) How does culturally sustaining informal STEM programming for families in rural communities contribute to increases in youth STEM persistence? (1a) How might this vary in relation to family and community factors? (2) How does culturally sustaining informal family STEM programming increase community connectivity between STEM-related resources and institutions across informal and formal learning contexts in rural communities leading to a more robust and inclusive STEM learning ecosystem? (2a) To what extent do participating families, informal STEM educators, STEM professionals, and community partners each play a role in increasing this connectivity? The research sample will include 300 families with youth ages 8-11, informal science educators, and STEM professionals across all four sites. Surveys, interviews and observations will be the primary data sources. Analysis of Variance and simple descriptive statistical analysis will be used to analyze the quantitative data. The qualitative data will be analyzed using thematic coding through NVivo. In addition, to complement the research data, JKS Consulting will conduct the formative and summative evaluations of the project to hone effective practices for training informal science learning practitioners in developing and implementing place-based, inquiry-based family learning in rural communities and effective and sustainable practices for engaging rural families in place-based STEM. Findings from the research will be made available and widely distributed in publications, conference presentations, and a multi-part Research to Practice Toolkit designed for parents and caregivers, informal science educators, STEM professionals, and the informal education field at large.
This Research in Service to Practice project is funded by the Advancing Informal STEM Learning (AISL) program.
The employment demands in STEM fields grew twice as fast as employment in non-STEM fields in the last decade, making it a matter of national importance to educate the next generation about science, engineering and the scientific process. The need to educate students about STEM is particularly pronounced in low-income, rural communities where: i) students may perceive that STEM learning has little relevance to their lives; ii) there are little, if any, STEM-related resources and infrastructure available at their schools or in their immediate areas; and iii) STEM teachers, usually one per school, often teach out of their area expertise, and lack a network from which they can learn and with which they can share experiences. Through the proposed project, middle school teachers in low-income, rural communities will partner with Dartmouth faculty and graduate students and professional science educators at the Montshire Museum of Science to develop sustainable STEM curricular units for their schools. These crosscutting units will include a series of hands-on, investigative, active learning, and standards-aligned lessons based in part on engineering design principles that may be used annually for the betterment of student learning. Once developed and tested in a classroom setting in our four pilot schools, the units will be made available to other partner schools in NH and VT and finally to any school wishing to adopt them. In addition, A STEM rural educator network, through which crosscutting units may be disseminated and teachers may share and support each other, will be created to enhance the teachers’ ability to network, seek advice, share information, etc.