This poster was presented at the 2021 NSF AISL Awardee Meeting.
Project Harvest is a co-created citizen science project that investigates the quality of household environments in Arizona communities neighboring active or legacy mining and/or toxic release. Project Harvest is a response to the community-driven questions, “Are there pollutants in harvested rainwater? Can I use the harvested rainwater for my garden?"
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
There exists a distinct disconnect between scientists’ perception of nature and people’s worldview. This ‘disconnect’ though has dialectical relationship with science communication processes which, causes impediments in the propagation of scientific ideas. Those ideas, which are placed at large cultural distance, do not easily become a part of cognitive structure of a common citizen or peoples thought complex. Low level of public understanding of bio-energy technologies is one such sphere of understanding. The present study is based on assumption that public debate on bio-energy is part of the
The project DIG: Scientists in Alaska's Scenery will perform proof-of-concept on integrating a tourist's visit with place-based stories of meaningful science research in the Arctic. DIG (Digitally Integrated Guide) will widen the general public's interaction with the cultural and natural environment by allowing them to access Web sites and load their handheld mobile devices with engaging descriptions of research. Access can occur before, during, or after their visit - even if the visit takes them far from computers, electricity and the Internet. The creation of user-friendly access to technology and to scientists' stories will provide a new information tool for the public. For these tourists, or others interested in research in Alaska, opportunities to learn directly from the scientists themselves are almost non-existent. Moreover, tourists have no capability to link such research with places they visit. DIG's place-based outreach will be delivered using standard media (broadcast TV, publications) and social media (Web, facebook, twitter, etc.) and mobile devices. DIG demonstration project will join scientists, Alaska Native peoples, tourists, media makers, interpreters and technology experts in inquiry-based learning designed to maximize engagement by the general public. The radically different approach to Arctic-focused science documentary proposed here fosters the close collaboration of the scientist and media maker. Video podcasts (vodcasts) and supporting Web-based materials will be created for three current research projects in Alaska, with a focus on NSF-funded projects. Such projects include anthropology and cultural/linguistic study, paleontology, climate change research, biology, and other areas. Delivery and evaluation will emphasize tourists who visit, or are planning to visit, the National Parks of Alaska. These tourists are accessible to the research team, and they are motivated to seek out information about the places they are visiting. If successful, our approach to science education and outreach will augment their knowledge about research in Alaska, resulting in a deeper and more informed experience.
DATE:
-
TEAM MEMBERS:
Gregory NewbyLiz O'ConnellDeborah Perry
The purpose of this integrated cross media project is to build public knowledge and curiosity about energy science and policy, to encourage audience confidence in its abilities to understand energy related science, and to stimulate exchange between community-based experts. The deliverables include five hour-long radio programs focusing on the interconnected nature of waterways, climate systems, and energy sources; a digital journalism and social network site focusing on energy topics; partner-driven outreach with universities and local public radio stations; and a training workshop for ethnic media partners. The project targets public radio listeners, ethnic media readers, local urban and rural communities, and Internet users. Partner organizations include New American Media, a consortium of ethnic media producers, the University of Texas at Austin (which will provide content expertise as well as outreach assistance), local public radio stations, and scientific organizations. Intended impacts on the general audience include building their knowledge and interest in energy science and policy, and influencing their confidence in understanding energy science, technology and engineering, as well as empowering them to voice their opinions in energy policy discussions and to make changes in their lives that will support a sustainable energy future. It is estimated that five million people will access the radio programs and web content over the sustained life of the project. Professional audience impacts include building science journalism capacity and reciprocal relationships between general and ethnic news media, as well as stimulating exchange between subject experts (e.g., water engineers and geoscientists) and community experts (e.g., community organizers and backyard gardeners) who can inform energy reporting and open new areas of discussion in the energy debate. The evaluation plan uses both quantitative and qualitative data collection and quasi-experimental designs to examine the impact of this project on both public and professional audiences.