This is a brief literature review examining the theory and practice of Community-Based Participatory Research (CBPR). It highlights CBPR's liberatory intent, and focuses on CBPR practice in indigenous communities and among youth.
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Informal STEM learning opportunities are often rare in rural locations where the early childhood education system is also under-resourced. Through partnerships with educational researchers, early math educators, pediatric health experts, and pediatric clinics, this project will develop and study a new opportunity for informal math learning. The project will work with pediatric clinics that serve rural immigrant families who are racially, culturally, and linguistically diverse. The project leverages the high levels of trust many caregivers have in their child’s pediatrician to improve math learning during critical early years. This project will build on a previous program where physician text messages to caregivers supported youth literacy development. In this instance the project will support caregivers’ math interactions with their 3- and 4-year-olds to cultivate children's math knowledge and skills. The text messaging program will be grounded in research in child development, mathematics learning, parenting practices, and adult behavior change. Texts will also provide caregiver supports for how to engage their children in mathematical activates in their everyday lives and provide information about the important skills children are developing. Text messages will be co-developed with caregiver input, and focus on content underlying mathematical development such as Number Sense, Classification and Patterning, Measurement, Geometry, and Reasoning. Caregivers will receive text messages from their pediatric clinics three times a week for eight months. For example, three related texts supporting Number Sense include: “FACT: Kids enjoy counting and it prepares them for K! Mealtimes are a fun time to practice counting objects;” “TIP: At a meal, say: Can you count all the cups on the table? All the plates? What else can you count? (Forks) Tell them: Great job!” and “GROWTH: You are helping kids to count & get ready for K. At the park, ask: How many bikes are there? How many birds? Count together & find out!” Throughout the planning and implementation phases of the project the team will work closely with early education math experts, key advisors, and caregivers to ensure the text messaging program is tailored to meet the cultural, linguistic, and contextual needs of rural caregivers and children.
The project will research impacts of the text messaging program on children, caregivers, and clinical staff. First, the project will investigate the impact of the texting program on children through a randomized trial, and pre-and-post measures of early childhood math skills and abilities. Second, using interviews at baseline and in a 9-month follow-up, the project will study the texting program’s impact on caregivers’ perceptions regarding the importance of math learning for young children. Third, the project will explore the impact of the text messaging program on health professionals’ understanding of math learning in early childhood by collecting qualitative data and assessing attitudes about the clinic’s role in supporting early math. Caregivers and clinic staff will also participate in focus groups to better understand impacts for each of these groups. The project will reach 1000 families, who will be randomly assigned to treatment or control groups through block-randomization, stratified by caregiver language and child’s age. This parent-informed project will build evidence toward new approaches to promoting early math in the pediatric clinic, an informal environment that can reach all families and can leverage innovative technology. Findings will be shared widely though a communication and engagement plan that includes children, caregivers, physicians and clinic staff, informal STEM educators, researchers, and policy makers.
DATE:
-
TEAM MEMBERS:
Lisa ChamberlainSusanna LoebJaime Peterson
This guide compiles lessons learned by seven Portal to the Public Network (PoPNet) sites as well as remaining challenges and recommendations for organizations planning similar efforts in the future. PoPNet sites used the Portal to the Public Guiding Framework to build relationships with local scientists, prepare them for public engagement using Portal to the Public training materials, and feature them at public programs.
With funding from the NASA Science Activation program, the Space Science Institute (SSI) launched NASA@ My Library in 2016. The vision of NASA@ My Library was to help public libraries and state library agencies increase NASA and STEM learning opportunities for library patrons throughout the U.S., including those in geographic areas and populations currently underserved in STEM education. SSI worked closely with its partners, including the American Library Association (ALA), Cornerstones of Science (CoS), the Lunar and Planetary Institute (LPI), and the Pacific Science Center’s Portal to the
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The goal of this pilot and feasibility study is to increase participation in informal STEM learning in rural Idaho through Stories of Fire, a program based on personal narratives of wildland fire. Idaho is a rural state, with an average population of just 19 people per square mile, the fourth lowest population density in the United States. The state is experiencing increasingly severe wildfire, and effective responses to such environmental change require a better understanding of the underlying science. Contextualizing science learning, making connections between everyday lives and a sense of place can engage learners and bring about a better understanding of wildfire. This project will bring together a science communicator, a narratologist, a fire ecologist, and a specialist on emotions and public lands. They will work collaboratively with informal educators based in rural areas of Idaho underrepresented in STEM fields. Rural areas are rich in knowledge based on years of cumulative observations, cultural beliefs, and practices shared through community networks. This project builds on these rural assets while addressing the challenges rural populations face. The project addresses broadening participation in STEM through narrative practices that encourage more diverse ways of knowing, being, and representing science.
This research study will explore: 1) what mechanisms of narrative (storytelling) most effectively integrate individuals? personal experiences and accurate STEM content in fire science communication, and 2) what audience-centered approaches best facilitate narrative approaches to informal STEM learning. This project engages four levels of participants over four phases of research and programming: 1) The research team will interview and analyze the narratives of 40 Frontliners (e.g., wildland firefighters and evacuees) from the inland Northwest region with first-hand experience with wildfire. 2) They will conduct a narrative workshop to train 20 informal STEM Educators from across the state on audience-centered approaches that facilitate participant storytelling about fire. 3) Educators will pilot their own narrative-based informal science learning programs with program participants in their rural home communities across the state, 4) A professional podcaster will create two podcasts modeled on our research findings for public audiences reached through media.
This Pilots and Feasibility Studies award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE:
-
TEAM MEMBERS:
Teresa CohnLeda KobziarJennifer LadinoErin James
In October 2017, the PBS NewsHour team produced a week and a half of opioid-related content, including several online explainers, which presented the opportunity for a natural experiment for the Experiments in Transmedia project.
Knology (formerly New Knowledge Organization Ltd.) conducted a two-wave research study to advance understanding of the youth audience’s knowledge and news consumption on the topic.
The first wave of the study, conducted in September 2017, provides a baseline. The content aired in October 2017, and the second wave of the study, conducted in November 2017, asked a
Developing and maintaining a diverse, innovative workforce in the fields of science, technology, engineering and math (known as STEM) is critical to American competitiveness in the world, but national surveys report a current and future shortage of highly qualified STEM professionals in the US. One problem creating this shortage is that more than half of all college students who declare a major in STEM fields drop out or change their majors in the first two years of their post-secondary education. This problem is particularly acute for first generation college students. If we could increase the STEM degree completion rate by just 25%, we would make up 75% of the additional workforce needed over the next decade.
Our project aims to increase the STEM persistence of first generation college students and focuses on rural students in West Virginia. Project partners including scientists from National Labs, college faculty, local school system staff, informal educators, State Department of Education officials, and West Virginia college students will collaborate to develop summer and academic year activities that support young undergraduates majoring in STEM. Activities that we will pilot include early opportunities to do science research, academic year courses that develop science, math and communication skills, and the formation of Hometown STEM Ambassadors; undergraduate STEM students that encourage younger students back in their hometown schools. We will study the impact of these activities on students' persistence in STEM majors.
Our Project is called FIRST TWO: Improving STEM Persistence in the First Two Years of College (FIRST TWO).
Technical Details:
During the Development Launch Project, partners will create and pilot components of two courses that will confer college credit to students in two and four year schools. Each course will have as its center piece a research and development internship. By the end of the Project Development Pilot, FIRST TWO course modules will be integrated into courses the State, and be transferable between community colleges and four-year schools.
An innovative component of FIRST TWO is the creation of Hometown STEM ambassadors--students who participate in both courses will be prepared to mentor their peers, and also conduct outreach in their home school districts. They will make presentations to hometown K-12 students, and will discuss STEM college readiness issues with local education leaders. We believe reconnecting post-secondary students with their home communities and providing place-based relevance to their STEM education will have a positive impact on their persistence, as well as the added benefit of encouraging K-12 students to envision themselves as future STEM professionals.
FIRST TWO will:
- integrate early experience in STEM internships, online communities of practice and STEM skills development into a discovery-based "principles of research and development" college seminar for first year students;
- sustain engagement through a second service learning course, called STEM Leadership that will develop communication and mentoring skills and produce peer mentors who will mentor younger students, join in the efforts to change the STEM education experience at their schools, and conduct outreach in their hometown communities during the students? second year and third years.
- secure state-wide adoption and transferability of these courses, or course materials, and ultimately scale the program across the Appalachian region and to other states with large rural student populations.
- collaborate with National Labs to determine the feasibility of a National STEM Persistence Alliance partnering National Lab internship programs with 2 and 4-year schools who serve FGC students.
Finally, there are many studies that inquire into the factors that correlate with post-secondary retention in general, and with STEM attrition specifically but few that focus on rural students. FIRST TWO will fully articulate a rigorous educational research project aimed at advancing understanding of the factors affecting rural students' entry into and persistence in STEM career pathways. This research will study the impact FIRST TWO program components make on rural FGC students' persistence in STEM majors. Instruments will be developed and validated that test the components proposed in FIRST TWO interventions. As we scale the program to a larger Alliance, so will the research study scale, providing a unique opportunity to inform the education community about the rural students' experience.
DATE:
-
TEAM MEMBERS:
Sue HeatherlyKaren ONeilErica Harvey
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE:
-
TEAM MEMBERS:
Julia ParrishMarco HatchSelina Heppell
Recruiting more research scientists from rural Appalachia is essential for reducing the critical public health disparities found in this region. As a designated medically underserved area, the people of Appalachia endure limited access to healthcare and accompanying public health education, and exhibit higher disease incidences and shorter lifespans than the conventional U.S. population (Pollard & Jacobsen, 2013). These health concerns, coupled with the fact that rural Appalachian adults are less likely to trust people from outside their communities, highlights the need for rural Appalachian youth to enter the biomedical, behavioral, and clinical research workforce. However, doing so requires not only the specific desire to pursue a science, technology, engineering, math, or medical science (STEMM) related degree, it also requires the more general desire to pursue post-secondary education at all. This is clearly not occurring in Tennessee’s rural Appalachian regions where nearly 75% of adults realize educational achievements only up to the high school level. Although a great deal of research and intervention has been done to increase students’ interest in STEMM disciplines, very little research has considered the unique barriers to higher education experienced by rural Appalachian youth. A critical gap in past interventions research is the failure to address these key pieces of the puzzle: combatting real and perceived barriers to higher education and STEMM pursuits in order to increase self-efficacy for, belief in the value of, and interest in pursuing an undergraduate degree. Such barriers are especially salient for rural Appalachian youth.
Our long-range goal is to increase the diversity of biomedical, clinical and behavioral research scientists by developing interventions that both reduce barriers to higher education and increase interest in pipeline STEMM majors among rural Appalachian high school students. Our objective in this application is to determine the extent to which a multifaceted intervention strategy combining interventions to address the barriers to and supports for higher education with interventions to increase interest in STEMM fields leads to increased intentions to pursue an undergraduate STEMM degree. Our hypothesis is that students who experience such interventions will show increases in important intrapersonal social-cognitive factors and in their intentions to pursue a postsecondary degree than students not exposed to such interventions. Based on the low numbers of students from this region who pursue post-secondary education and the research demonstrating the unique barriers faced by this and similar populations (Gibbons & Borders, 2010), we believe it is necessary to reduce perceived barriers to college-going in addition to helping students explore STEMM career options. In other words, it is not enough to simply offer immersive and hands-on research and exploratory career experiences to rural Appalachian youth; they need targeted interventions to help them understand college life, navigate financial planning for college, strategize ways to succeed in college, and interact with college-educated role models. Only this combination of general college-going and specific STEMM-field information can overcome the barriers faced by this population. Therefore, our specific aims are:
Specific Aim 1: Understand the role of barriers to and support for higher education in Appalachian high school students’ interest in pursuing STEMM-related undergraduate degrees. We will compare outcomes for students who participate in our interventions, designed to proactively reduce general college-going barriers while increasing support systems, to outcomes for students from closely matched schools who do not participate in these interventions to determine the extent to which such low-cost interventions, which can reach large numbers of students, are effective in increasing rural Appalachian youth’s intent to pursue STEMM-related undergraduate degrees.
Specific Aim 2: Develop sustainable interventions that decrease barriers to and increase support for higher education and that increase STEMM-related self-efficacy and interest. Throughout our project, we will integrate training for teachers and school counselors, nurture lasting community partnerships, and develop a website with comprehensive training modules to allow the schools to continue implementing the major features of the interventions long after funding ends.
This research is innovative because it is among the first to recognize the unique needs of this region by directly addressing barriers to and supports for higher education and integrating such barriers-focused interventions with more typical STEMM-focused interventions. Our model provides opportunities to assess college-going and STEMM-specific self-efficacy, outcome expectations, and barriers/supports, giving us a true understanding of how to best serve this group. Ultimately, this project will allow future researchers to understand the complex balance of services needed to increase the number of rural Appalachians entering the biomedical, behavioral, and clinical research science workforce.
A wide gap exists between what scientists and rural farmers know. The rapid advancements in digital technology are likely to widen this gap even further. At the farmers' level, this knowledge gap often translates into poor and inefficient management of resources resulting in reduced profits and environmental pollution. Most modern rice cultivars can easily yield more than 5 tons per hectare when well managed, but millions of farmers often get less than 5 tons using the same production inputs.