Hanohano o Oahu: The Geology and Moolelo of Kona to Ewa project will provide learning opportunities for 500 fourth grade students and their teachers from ten public schools located in central and leeward Oahu, Hawaii. A geology unit will be developed that includes a 90-minute class presentation, hands-on classroom activities, a Discovery Box to extend learning opportunities, and a full-day (5-hour) field trip experience. The multi-stop bus tour will be centered on the moku (district) of Kona and Ewa and highlight significant Oahu cultural sites, their moolelo (stories, history) and geology. A culture-based student activity booklet, hands-on activities, and other education materials will also be developed for the unit. The project will target rural communities with underserved families, large Hawaiian homestead neighborhoods, and little access to museum services. Participation in the programming will provide students and teachers with a better understanding of the connection between scientific information and Hawaiian knowledge.
This project will advance efforts of the Innovative Technology Experiences for Students and Teachers (ITEST) program to better understand and promote practices that increase students' motivations and capacities to pursue careers in fields of science, technology, engineering, or mathematics (STEM) by bringing together youth (grades 2-5), their families, librarians, and professional engineers in an informal environment centered on engaging youth with age-appropriate, technology-rich STEM learning experiences fundamental to the engineering design process. The overarching aim is to better understand how youth's learning preferences or dispositions relate to their STEM learning experiences. It also seeks to build community members' capacity to inspire and educate youth about STEM careers. The project team includes the Space Science Institute's (SSI) National Center for Interactive Learning (NCIL), the University of Virginia (UVA) and the American Society of Civil Engineers (ASCE). This team builds on the scope and reach of a prior NSF-funded project called the STAR Library Education Network (STAR_Net). As an extension of this prior work, Project BUILD will collaborate with 6 public libraries (3 urban and 3 rural) and their local ASCE Branches. Two libraries have been selected to serve as pilots: High Plains Public Library in Colorado and the African-American Research Library and Cultural Center in Florida. All partner libraries will develop a plan for recruiting participants from groups currently underrepresented in STEM professions. Project BUILD's specific aims are to 1) Engage underserved audiences, 2) Build the capacity of participating librarians and ASCE volunteers, 3) Increase interest and engagement in STEM activities for youth in grades 2-5 and their families, and 4) Conduct a comprehensive education research project. Program components include the following: 1) Community Dialogue Events, 2) a Professional Development Program for partner librarians and ASCE volunteers, and 3) Development of a Technology-rich Programming Kit and Circulating STEM Kit program. Two research questions will be addressed: 1) What common factors might identify youth who engage in project activities and what factors might differentiate between youth who continue with program engagement and those who do not? and 2) What programmatic factors (i.e. design and composition of program activities, library recruitment, librarian engagement, professional engineer engagement, etc.) might influence youth's initial and continued engagement in project activities as well as youth's reported future career interests? An external evaluation will investigate the quality of the project's process as well as its impact and effectiveness. Benefits to the participating libraries' communities, library and engineering professionals, and the education community will be achieved through 1) Community Dialogue events; 2) Library and Librarian Outreach; 3) ASCE Outreach; and 4) Publication of Research and Evaluation results.
In 2017, Concord Evaluation Group (CEG) conducted a summative evaluation of Design Squad Global (DSG). DSG is produced and managed by WGBH Educational Foundation. WGBH partnered with FHI 360, a nonprofit human development organizations working in 70 countries, to implement DSG around the globe.
In the DSG program, children in afterschool and school clubs explored engineering through hands-on activities, such as designing and building an emergency shelter or a structure that could withstand an earthquake. Through DSG, children also had the chance to work alongside a partner club from another
Improving retention rates in postsecondary engineering degree programs is the single most effective approach for addressing the national shortage of skilled engineers. Both mathematics course placement and performance are strong graduation predictors in engineering, even after controlling for demographic characteristics. Underrepresented students (e.g., rural students, low-income students, first-generation students, and students of color) are disproportionately represented in cohorts that enter engineering programs not yet calculus-ready. Frequently, the time and cost of obtaining an engineering degree is increased, and the likelihood of obtaining the degree is also reduced. This educational problem is particularly acute for African American students who attended select high schools in South Carolina, with extremely high-poverty rates. As a result, the investigators proposed an NSF INCLUDES Launch Pilot project to develop a statewide consortium in South Carolina - comprising all of the public four-year institutions with ABET-approved engineering degree programs, all of the technical colleges, and 118 high schools with 70% or higher poverty rates, to pinpoint and address the barriers that prevent these students from being calculus ready in engineering.
This NSF INCLUDES Launch Pilot project will map completion/attrition pathways of students by collecting robust cross-sectional data to identify and understand the complex linkages between and behind critical decisions. Such data have not been available to this extent, especially focused on diverse populations. Further, by developing structural equation models (SEMs), the investigators will be able to build on extant research, contributing directly to understanding the relative impact of a range of latent variables on the development of engineering identity, particularly among African American, rural, low-income, and first-generation engineering students. Results of the pilot interventions are likely to contribute to the empirical and theoretical literature that focus on engineering persistence among underrepresented populations. Project plans also include developing a centralized database compatible to the Multiple Institution Database for Investigation of Engineering Longitudinal Development (MIDFIELD) project to share institutional data with K-12 and postsecondary administrators, engineering educators, and education researchers with NSF INCLUDES projects and beyond.
DATE:
-
TEAM MEMBERS:
Anand GramopadhyeDerek BrownEliza GallagherKristin Frady
Community colleges play a vital role in educating undergraduate students. These higher education institutions educate nearly half of the nation's undergraduate students, particularly among low-income and first-generation students and students of color. Because of the rich diversity that currently exists at these institutional-types, there are immense opportunities to broadening participation throughout the engineering enterprise. To this end, the investigator outlines a joint collaboration with five community colleges, three school systems, two college career academies, and a state partner in Georgia - referred as the Georgia Science, Technology, and Engineering Partnerships for Success (GA STEPS) - to provide dual enrollment classes in career pathways for Georgia high school students in grades 9-12, thereby allowing secondary students to earn college credit. The Georgia STEPS program proposes to leverage mechatronics engineering as a means for broadening engineering participation for community colleges and underserved, underrepresented populations in 48 rural counties to increase engineering awareness, skills training and college and career readiness. The project builds on an existing collaboration that has developed successful engineering opportunities at the community college level, by including a wider regional network of rural Georgia counties and high schools. Further, this project has immense potential to transform engineering education and course-taking for students at the secondary and postsecondary level in Georgia and beyond. It has potential great potential to be scaled and replicated at other placed around the United States.
The project's intellectual merit and innovation is that it leverages a successful mechatronics engineering curriculum that supports engineering skills that support local industry as well as supporting innovations in the mechatronics field. The project includes a collective impact framework, involving various stakeholders and aligning quantitative and qualitative metrics and measurable objectives. The broader impacts of this project is that it increases the engineering knowledge and skills of underserved, underrepresented students that are enrolled in community colleges. Also, the impact to rural communities in Georgia support the fact that this project would meet broader groups that can be positively impacted by this type of collaborative. The ability to provide different parts of this engineering discipline across broad audiences in community colleges - that support underrepresented groups understanding of mechatronics engineering - is broadly useful to the field of engineering.
The Water for Life project has been an effective, and in some cases an essential vehicle for addressing issues around water quality and retention in island settings where water security is an on-going challenge. The focus on local partnerships was a highly valued attribute of the WfL project, and the informal science and conservation education resources produced and disseminated by the project have had a significant impact on these populations
Abstract: We aim to disrupt the multigenerational cycle of poverty in our rural indigenous (18% Native American and 82% Hispanic) community by training our successful college students to serve as role models in our schools. Poverty has led to low educational aspirations and expectations that plague our entire community. As such, its disruption requires a collective effort from our entire community. Our Collective unites two local public colleges, 3 school systems, 2 libraries, 1 museum, 1 national laboratory and four local organizations devoted to youth development. Together we will focus on raising aspirations and expectations in STEM (Science, Technology, Engineering and Mathematics) topics, for STEM deficiencies among 9th graders place them at risk of dropping out while STEM deficiencies among 11th and 12th graders preclude them from pursuing STEM majors in college and therefore from pursuing well paid STEM careers. We will accomplish this by training, placing, supporting, and assessing the impact of, an indigenous STEM mentor corps of successful undergraduate role models. By changing STEM aspirations and expectations while heightening their own sense of self-efficacy, we expect this corps to replenish itself and so permanently increase the flow of the state's indigenous populations into STEM majors and careers in line with NSF's mission to promote the progress of science while advancing the national health, prosperity and welfare.
Our broader goal is to focus the talents and energies of a diverse collective of community stakeholders on the empowerment of its local college population to address and solve a STEM disparity that bears directly on the community's well-being in a fashion that is generalizable to other marginalized communities. The scope of our project is defined by six tightly coupled new programs: three bringing indigenous STEM mentors to students, one training mentors, one training mentees to value and grow their network of mentors, and one training teachers to partner with us in STEM. The intellectual merit of our project lies not only in its assertion that authentic STEM mentors will exert an outsize influence in their communities while increasing their own sense of self-efficacy, but in the creation and careful application of instruments that assess the factors that determine teens' attitudes, career interests, and behaviors toward a STEM future; and mentors' sense of self development and progress through STEM programs. More precisely, evaluation of the programs has the potential to clarify two important questions about the role of college-age mentors in schools: (1) To what degree is the protege's academic performance and perceived scholastic competence mediated by the mentor's impact on (a) the quality of the protege's parental relationship and (b) the social capital of the allied classroom teacher; (2) To what degree does the quality of the student mentor's relationships with faculty and peers mediate the impact of her serving as mentor on her self-efficacy, academic performance, and leadership skills?
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE:
-
TEAM MEMBERS:
Julia ParrishMarco HatchSelina Heppell
While the term 'failure' brings to mind negative associations, there is a current focus on failure as a driver of innovation and development in many professional fields. It is also emerging from prior research that for STEM professionals and educators, failure plays an important role in designing and making to increase learning, persistence and other noncognitive skills such as self-efficacy and independence. By investigating how youth and educators attend to moments of failure, how they interpret what this means, and how they respond, we will be better able to understand the dynamics of each part of the experience. The research team will be working with youth from urban, suburban and rural settings, students from Title I schools or who qualify for free/reduced-price lunches, those from racial and ethnic minority groups, as well as students who are learning English as a second language. These youth are from groups traditionally underrepresented in STEM and in making, and research indicates they are more likely to experience negative outcomes when they experience failure.
The intellectual merit of this project centers on establishing a baseline understanding of how failure in making is triggered and experienced by youth, what role educators play in the process, and what can be done to increase persistence and learning, rather than failure being an end-state. The research team will investigate these issues through the use of qualitative and quantitative research methods. In particular, the team will design and evaluate the effectiveness of interventions on increasing the abilities of youth and educators in noticing and responding to failures and increasing positive (e.g., resilience) outcomes. Research sites are selected because they will allow collection of data on youth from a wide range of backgrounds. The research team will also work to test and revise their hypothesized model of the influence of factors on persistence through failures in making. This project is a part of NSF's Maker Dear Colleague Letter (DCL) portfolio (NSF 15-086), a collaborative investment of Directorates for Computer & Information Science & Engineering (CISE), Education and Human Resources (EHR) and Engineering (ENG).
Rural communities across the Nation are, in general, underserved in terms of the various forms of STEM education. Clearly, they are under-represented in the realm of contemporary STEM subjects often because they are geographically isolated and cannot travel to cities where there are Science and Museum Centers for informal education opportunities. As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. This award will, in a collaborative effort within the community, bring STEM activities to selected communities in Arizona. Among the initial activities, there will be a STEM festival highlighting aspects of the community and its assets in an effort to gather support and begin to give perspective on identity for an extended effort of longevity. Further, these communities will be networked to facilitate discussion and to enhance effectiveness.
This project will develop STEM activities and STEM learning within a selected community by giving the community and its residents identity and opportunities for youth development and career choices. The selected communities in Arizona represent a diverse group that includes Native Americans and Latinos. In collaboration with community residents, a designed plan will be established that satisfies the needs and opportunities that can be derived from the extant community assets whether it is mining, tourism, or government facilities. Evaluation efforts are set to determine what the key features and methodologies are that facilitate STEM knowledge acquisition for each rural community. This project represents seminal and foundational work in the area of rural informal STEM education. Researchers will explore the following questions: 1) understanding how rural communities currently perceive, access, and engage in informal science learning, and the extent to which they identify themselves and/or their community in relation to science; and 2) the extent to which relevant, place-based networks can increase public awareness of local STEM assets, resources, and opportunities, and foster a science-related identity at both the personal and community level. These data will be compared to data on other rural community projects in the AISL portfolio. The partners in this effort include the Arizona Science Center, community leaders from four rural regions in Arizona, Arizona State University, and the Center of Science and Industry.
A frequently missing element in environmental education programs is a concerted effort by communities, organizations, government, and academic stakeholders to build meaningful partnerships and cultivate informal science learning opportunities via public participation in environmental research. This collaborative approach not only makes scientific information more readily available, it also engages community members in the processes of scientific inquiry, synthesis, data interpretation, and the translation of results into action. This project will build a co-created citizen science program coupled with a peer education model and an extensive communication of results to increase environmental STEM literacy. The project targets historically underrepresented populations that are likely to be disproportionately impacted by climate, water scarcity, and food security. Based upon past needs assessments in the targeted communities, gardens irrigated by harvested rainwater will become hubs for environmental STEM education and research. For this project, gardens irrigated by harvested rainwater will serve as hubs for environmental literacy education efforts. Researchers from the University of Arizona and Sonora Environmental Research Institute will work alongside community environmental health workers, who will then train families residing in environmentally compromised areas (urban and rural) on how to monitor their soil, plant, and harvested water quality. The project aims to: (1) co-produce environmental monitoring, exposure, and risk data in a form that will be directly relevant to the participants' lives, (2) increase the community's involvement in environmental decision-making, and (3) improve environmental STEM literacy and learning in underserved rural and urban communities. The project will investigate and gather extensive quantitative and quantitative data to understand how: (1) participation in a co-created citizen science project enhances a participant's overall environmental STEM literacy; (2) a peer-education model coupled with a co-created citizen science program affects participation of historically underrepresented groups in citizen science; and (3) the environmental monitoring approach influences the participant's environmental health learning outcomes and understanding of the scientific method. In parallel, this project will evaluate the role of local-based knowledge mediators and different mechanisms to communicate results. These findings will advance the fields of informal science education, environmental science, and risk communication. Concomitantly, the project will facilitate the co-generation of a robust dataset that will not only inform guidelines and recommendations for harvested rainwater use, it will build capacity in underserved communities and inform the safe and sustainable production of food sources. This research effort is especially critical for populations in arid and semiarid environments, which account for ~40% of the global land area and are inhabited by one-third of the world's population. This program will be available in English and Spanish and can truly democratize environmental STEM research and policy. This project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understandings of, the design and development of STEM learning in informal environments.
Chemistry is an important and widely relevant field of science. However, when compared with other STEM content areas, chemistry is under-represented in U.S. science museums and other informal educational environments. This project will build, and build knowledge about, innovative approaches to delivering informal science learning activities in chemistry. The project will not only increase public interest and understanding of chemistry but also increase public perception of chemistry's relevance and increase the public's self-efficacy with respect to chemistry. This project outcomes will include a guide for practitioners along with activity materials that will be packaged into a kit, distributed, and replicated for use by informal science educators, chemists, and chemistry students at 250 sites across the U.S. The project team will reach out to organizations that serve diverse audiences and diverse geographic locations, including organizations in rural and inner-city areas. The kits will provide guidance on engaging girls, people with various abilities, Spanish speakers, and other diverse audiences, and include materials in Spanish. Written guides, training videos, and training slides will be included to support training in science communication in general, as well as chemistry in particular. This project is supported by the Advancing Informal STEM Learning (AISL) program funds research and innovative resources for use in a variety of settings, as a part of its overall strategy to enhance learning in informal environments.
This project will take an innovative approach to develop informal educational activities and materials about chemistry. Rather than starting with content goals, the project will start with a theoretical framework drawn from research about affecting attitudes about science related to interest, relevance, and self-efficacy. A design-based research approach (DBR) will be used to apply that framework to the development of hands-on educational activities about chemistry, while also testing and modifying the framework itself. (DBR blends empirical educational research with the theory-driven design of learning environments.) Existing or new educational activities that appear to embody key characteristics defined in the framework will be tested with public audiences for their impact on visitors. Researchers and educators will determine how different characteristics of the educational activities defined in the framework affect the outcomes. The activities will be modified and tested iteratively until the investigators achieve close alignment between framework and impacts.. The project team will continue the design-based research approach both to examine groups of activities in which synergies can have impacts beyond single interactions as well as to examine varied ways of training facilitators who can also significantly affect outcomes. In this way, the project will generate knowledge about how kits of hands-on informal learning activities can stimulate attitudes of interest, relevance, and self-efficacy with respect to the neglected field of chemistry. The project teams will broadly disseminate project outcomes within the educational research, science and informal Science, Technology, Engineering and Mathematics (STEM) education communities. While this project will focus on chemistry, the strategies it will develop and test through a design-based research process will provide valuable insight into effective approaches for informal STEM education more broadly.