Skip to main content

Community Repository Search Results

resource research Informal/Formal Connections
This is a brief literature review examining the theory and practice of Community-Based Participatory Research (CBPR). It highlights CBPR's liberatory intent, and focuses on CBPR practice in indigenous communities and among youth. 
DATE:
TEAM MEMBERS: Adhann Iwashita
resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Informal STEM learning opportunities are often rare in rural locations where the early childhood education system is also under-resourced. Through partnerships with educational researchers, early math educators, pediatric health experts, and pediatric clinics, this project will develop and study a new opportunity for informal math learning. The project will work with pediatric clinics that serve rural immigrant families who are racially, culturally, and linguistically diverse. The project leverages the high levels of trust many caregivers have in their child’s pediatrician to improve math learning during critical early years. This project will build on a previous program where physician text messages to caregivers supported youth literacy development. In this instance the project will support caregivers’ math interactions with their 3- and 4-year-olds to cultivate children's math knowledge and skills. The text messaging program will be grounded in research in child development, mathematics learning, parenting practices, and adult behavior change. Texts will also provide caregiver supports for how to engage their children in mathematical activates in their everyday lives and provide information about the important skills children are developing. Text messages will be co-developed with caregiver input, and focus on content underlying mathematical development such as Number Sense, Classification and Patterning, Measurement, Geometry, and Reasoning. Caregivers will receive text messages from their pediatric clinics three times a week for eight months. For example, three related texts supporting Number Sense include: “FACT: Kids enjoy counting and it prepares them for K! Mealtimes are a fun time to practice counting objects;” “TIP: At a meal, say: Can you count all the cups on the table? All the plates? What else can you count? (Forks) Tell them: Great job!” and “GROWTH: You are helping kids to count & get ready for K. At the park, ask: How many bikes are there? How many birds? Count together & find out!” Throughout the planning and implementation phases of the project the team will work closely with early education math experts, key advisors, and caregivers to ensure the text messaging program is tailored to meet the cultural, linguistic, and contextual needs of rural caregivers and children.

The project will research impacts of the text messaging program on children, caregivers, and clinical staff. First, the project will investigate the impact of the texting program on children through a randomized trial, and pre-and-post measures of early childhood math skills and abilities. Second, using interviews at baseline and in a 9-month follow-up, the project will study the texting program’s impact on caregivers’ perceptions regarding the importance of math learning for young children. Third, the project will explore the impact of the text messaging program on health professionals’ understanding of math learning in early childhood by collecting qualitative data and assessing attitudes about the clinic’s role in supporting early math. Caregivers and clinic staff will also participate in focus groups to better understand impacts for each of these groups. The project will reach 1000 families, who will be randomly assigned to treatment or control groups through block-randomization, stratified by caregiver language and child’s age. This parent-informed project will build evidence toward new approaches to promoting early math in the pediatric clinic, an informal environment that can reach all families and can leverage innovative technology. Findings will be shared widely though a communication and engagement plan that includes children, caregivers, physicians and clinic staff, informal STEM educators, researchers, and policy makers.
DATE: -
TEAM MEMBERS: Lisa Chamberlain Susanna Loeb Jaime Peterson
resource evaluation Media and Technology
Ruff Family Science is a project funded by the National Science Foundation (NSF) that aims to foster joint media engagement and hands-on science exploration among diverse, low-income parents and their 4- to 8-year-old children. Building on the success of the PBS series FETCH! with Ruff Ruffman, the project leverages FETCH’s funny and charismatic animated host, along with its proven approach to teaching science, to inspire educationally disadvantaged families to explore science together. The project is utilizing a research and design process to create resources that meet the needs of families
DATE:
TEAM MEMBERS: Mary Haggerty Heather Lavigne Jessica Andrews
resource project Media and Technology
One common barrier to STEM engagement by underserved and underrepresented communities is a feeling of disconnection from mainstream science. This project will involve citizen scientists in the collection, mapping, and interpretation of data from their local area with an eye to increasing STEM engagement in underrepresented communities. The idea behind this is that science needs to start at home, and be both accessible and inclusive. To facilitate this increased participation, the project will develop a network of stakeholders with interests in the science of coastal environments. Stakeholders will include members of coastal communities, academic and agency scientists, and citizen science groups, who will collectively and collaboratively create a web-based system to collect and view the collected and analyzed environmental information. Broader impacts include addressing the STEM barriers to those who reside in the coastal environment but who are underrepresented in STEM education, vocations and policy-making. These include tribal communities (racial and ethnic inclusion), fishery communities (inclusion of communities of practice), and rural communities without direct access to colleges or universities. This project will create a physical, a social, and a virtual, environment where all participants have an equal footing in the processes of "doing science" - the Coastal Almanac. The Almanac is simultaneously a network of individuals and organizations, and a web-based repository of coastal data collected through the auspices of the network. During the testing phase, the researchers will implement the "rules of engagement" through multiple interaction pathways in the growing Coastal Almanac network: increases in rigorous citizen science, development of specific community-scientist partnerships to collect and/or use Almanac data, development of K-12 programs to collect and/or use Almanac data. The proposed work will significantly scale up citizen science and community-based science programs on the West Coast, broadening participation by targeting members of coastal communities with limited access to mainstream science, including participants from non-STEM vocations, and Native Americans. The innovation of the Coastal Almanac is in allowing the process of deepening involvement in science, and through that process increasing agency of community members to be bona fide members of the science team, to evolve organically, in the manner dictated by community members and the situation, rather than a priori by the project team and mainstream science. The project has the potential in the long-term to increase participation in marine science education, workforce, and policy-making by underrepresented groups resident in the coastal environment. Contributions by project citizen scientists will also provide valuable data to mainstream science and to resource management efforts.
DATE: -
TEAM MEMBERS: Julia Parrish Marco Hatch Selina Heppell
resource project Media and Technology
This project had three objectives to build knowledge with respect to advancing Informal STEM Education:


Plan, prototype, fabricate, and document a game-linked design-and-play STEM exhibit for multi-generational adult-child interaction utilizing an iterative exhibit design approach based on research and best practices in the field;
Develop and disseminate resources and models for collaborative play-based exhibits to the informal STEM learning community of practice of small and mid-size museums including an interactive, tangible tabletop design-and-play game and a related tablet-based game app for skateboarding science and technology design practice;
Conduct research on linkages between adult-child interactions and game-connected play with models in informal STEM learning environments.


Linked to these objectives were three project goals:


Develop tools to enable children ages 5-8 to collaboratively refine and test their own theories about motion by exploring fundamental science concepts in linked game and physical-object design challenge which integrates science (Newton’s Laws of Motion) with engineering (iterative design and testing), technology (computational models), and mathematics (predictions and comparisons of speed, distance, and height). [Linked to Objectives 1 & 3]
Advance the informal STEM education field’s understanding of design frameworks that integrate game environments and physical exhibit elements using tangibles and playful computational modeling and build upon the “Dimensions of Success” established STEM evaluation models. [Linked to Objectives 1 & 2]
Examine methods to strengthen collaborative learning within diverse families through opportunities to engage in STEM problem-based inquiry and examine how advance training for parents influences the extent of STEM content in conversations and the quality of interactions between caregivers and children in the museum setting. [Linked to Objectives 1 & 3]


The exhibit designed and created as a result of this grant project integrates skateboarding and STEM in an engaging context for youth ages 5 to 8 to learn about Newton’s Laws of Motion and connect traditionally underserved youth from rural and minority areas through comprehensive outreach. The exhibit design process drew upon research in the learning sciences and game design, science inquiry and exhibit design, and child development scholarship on engagement and interaction in adult-child dyads.

Overall, the project "Understanding Physics through Collaborative Design and Play: Integrating Skateboarding with STEM in a Digital and Physical Game-Based Children’s Museum Exhibit" accomplished three primary goals. First, we planned, prototyped, fabricated, and evaluated a game-linked design-and-play STEM gallery presented as a skatepark with related exhibits for adult-child interaction in a Children's Museum.

Second, we engaged in a range of community outreach and engagement activities for children traditionally underserved in Museums. We developed and disseminated resources for children to learn about the physics of the skatepark exhibit without visiting the Museum physically. For example, balance board activities were made portable, the skatepark video game was produced in app and web access formats, and ramps were created from block sets brought to off-site locations.

Third, we conducted a range of research to better understand adult-child interactions in the skatepark exhibit in the Children's Museum and to explore learning of physics concepts during physical and digital play. Our research findings collectively provide a new model for Children's Museum exhibit developers and the informal STEM education community to intentionally design, evaluate, and revise exhibit set-up, materials, and outcomes using a tool called "Dimensions of Success (DOS) for Children's Museum Exhibits." Research also produced a tool for monitoring the movement of children and families in Museum exhibit space, including time on task with exhibits, group constellation, transition time, and time in gallery. Several studies about adult-child interactions during digital STEM and traditional pretend play in the Museum produced findings about social positioning, interaction style, role, and affect during play.
DATE: -
TEAM MEMBERS: Deb Dunkhase Kristen Missall Benjamin DeVane
resource research Media and Technology
NASA’s Science Mission Directorate (SMD) explores the Earth, the Sun, our solar system, the galaxy and beyond through four SMD divisions: Earth Science, Heliophysics, Planetary Science and Astrophysics. Alongside NASA scientists, teams of education and public outreach (EPO) specialists develop and implement programs and resources that are designed to inspire and educate students, teachers, and the public about NASA science.
DATE:
TEAM MEMBERS: Nancy Alima Ali Bonnie Meinke
resource project Media and Technology
The Herpetology Education in Rural Places & Spaces (HERPS) project is a four-year full-scale development project designed to engage diverse North Carolina residents from the Central Piedmont, Eastern Piedmont, and Inner Coastal Plain regions of the state in conservation and field experiences focused on herpetology, the study of reptiles and amphibians. The project targets rural underrepresented groups in STEM; predominately African-Americans, Hispanics, and Lumbee Native Americans. The University of North Carolina-Greensboro and its partner organizations, Elon University and University of North Carolina-Pembroke, will partner to develop and implement all phases of the project. Ultimately, the project aims to increase knowledge of and interest in herpetology and related conservation issues, provide authentic research experiences, and better understand identity-related motivations and affordances of the casual, regular, and enthusiastic participant across project strands. HERPS builds on four pilot studies and will engage people of all ages in a broad range of herpetological activities including: (a) an annual herpetology-focused community event (HERPS Celebrations), (b) technology resources such as a project website and customized mobile applications (HERPS Cyberhub), (c) summer and year-long herpetological research experiences (HREs) for high school students and teachers, and (d) in-depth longitudinal herpetological study opportunities (e.g., box turtle study). In addition, there is separate but integrated research stand that will focus on identity and HERPS experiences, as settings for informal science learning. The identity research will study: (a) identity-related motivations and (b) identity-related affordances of casual, regular and enthusiastic participants across threads. In addition, an extensive formative and summative evaluation will be conducted using a mixed methods approach by an external evaluator. Using a multiple-entry-points approach for learning and engagement, this project could serve as a replicable model for similar efforts in other settings. In addition, the results of the identity reseach strand could fill a critical gap in the identity and informal science education research bases. With an average estimated reach of nearly 15,000 people of all ages and diverse backgrounds, the potential broader impacts of this project could be extensive.
DATE: -
TEAM MEMBERS: Catherine Matthews Andy Ash Terry Tomasek Ann Somers Heidi Carlone
resource project Media and Technology
To address a lack of informal science education opportunities and to increase community capacity to support STEM education for their children, Washington State University's Yakima Valley/Tri Cities MESA program, the Pacific Science Center, and KDNA Educational Radio have developed a set of informal science initiatives that offer complementary learning opportunities for rural Latino families. The goal of this four-year program is to create a sustainable informal science infrastructure in southeastern Washington State to serve families, increase parental awareness, support and involvement in science education and ultimately increase the numbers of rural Latino youth pursuing STEM-related under graduate studies. This program is presented in English and Spanish languages in all of its interconnected deliverables: Two mobile exhibits, beginning with one focused on agricultural and environmental science developed by The Pacific Science (PCS) Center; Curriculum and training in agriculture, life sciences and facilitating learning; Curriculum and training for community members to provide support to parents in encouraging the academic aspirations of their children developed by PSC and MESA; 420 Youth and parents from the MESA program trained to interpret exhibits and run workshops, community festivals, family science workshops and Saturday programs throughout the community; Four annual community festivals, quarterly Family Saturday events, and Family Science Workshops reaching 20,000 people over the four-year project; Take home activities, science assemblies, a website and CDs with music and science programming for community events; A large media initiative including monthly one hour call-in radio programs featuring science experts, teachers, professionals, students and parents, 60-second messages promoting science concepts and resources and a publicity campaign in print, radio and TV to promote community festivals. These venues reach 12,500-25,000 people each; A program manual that includes training, curriculum and collaborative strategies used by the project team. Overall Accesso la Ciencia connects parents and children through fun community activities to Pasco School District's current LASER science education reform effort. This project complements the school districts effort by providing a strong community support initiative in informal science education. Each activity done in the community combines topics of interest to rural Latinos (agriculture for instance) to concepts being taught in the schools, while also providing tools and support to parents that increases their awareness of opportunities for their children in STEM education.
DATE: -
TEAM MEMBERS: James Pratt D. Janae' Landis Donald Lynch Michael Trevisan
resource project Media and Technology
The Space Science Institute (SSI) seeks to develop the "Stardust Project," designed to introduce the public to concepts related to the birth of stars, the search for planets beyond our solar system and the search for life beyond earth. The project's three components include a 2,500 square-foot travelling exhibition called "Stardust: Our Search for Origins;" a comprehensive education program for museum staff and grades 4-9 school teachers and a public Web site that incorporates and builds on the exhibit and education content. The project proposes to assemble standards-based educational materials for dissemination through workshops conducted at museums that host the exhibit. The educational programs -- particularly professional development workshops for teachers -- target, among other groups, underserved Native American and Hispanic teachers associated with a partnership between SSI and the NSF Rural Systematic Initiatives in the American West. The project is built around strong partnerships with two NASA Origins Program missions and with established informal education institutions including the New York Hall of Science, the Lawrence Hall of Science, the Denver Museum of Nature and Science, TERC and the SETI Institute. Its goals are to make it possible for teachers, students and the public to learn about: The formation of stars, planets, and the solar system; The conditions necessary for life; The effect of life on Earth's environment; The methods used to detect planets orbiting distant stars and The scientific tools used in origin research -- from space-based telescopes to microscopes.
DATE: -
TEAM MEMBERS: Paul Dusenbery