Skip to main content

Community Repository Search Results

resource project Media and Technology
As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program funds innovative resources for use in a variety of settings. Informal STEM learning opportunities are often rare in rural locations where the early childhood education system is also under-resourced. Through partnerships with educational researchers, early math educators, pediatric health experts, and pediatric clinics, this project will develop and study a new opportunity for informal math learning. The project will work with pediatric clinics that serve rural immigrant families who are racially, culturally, and linguistically diverse. The project leverages the high levels of trust many caregivers have in their child’s pediatrician to improve math learning during critical early years. This project will build on a previous program where physician text messages to caregivers supported youth literacy development. In this instance the project will support caregivers’ math interactions with their 3- and 4-year-olds to cultivate children's math knowledge and skills. The text messaging program will be grounded in research in child development, mathematics learning, parenting practices, and adult behavior change. Texts will also provide caregiver supports for how to engage their children in mathematical activates in their everyday lives and provide information about the important skills children are developing. Text messages will be co-developed with caregiver input, and focus on content underlying mathematical development such as Number Sense, Classification and Patterning, Measurement, Geometry, and Reasoning. Caregivers will receive text messages from their pediatric clinics three times a week for eight months. For example, three related texts supporting Number Sense include: “FACT: Kids enjoy counting and it prepares them for K! Mealtimes are a fun time to practice counting objects;” “TIP: At a meal, say: Can you count all the cups on the table? All the plates? What else can you count? (Forks) Tell them: Great job!” and “GROWTH: You are helping kids to count & get ready for K. At the park, ask: How many bikes are there? How many birds? Count together & find out!” Throughout the planning and implementation phases of the project the team will work closely with early education math experts, key advisors, and caregivers to ensure the text messaging program is tailored to meet the cultural, linguistic, and contextual needs of rural caregivers and children.

The project will research impacts of the text messaging program on children, caregivers, and clinical staff. First, the project will investigate the impact of the texting program on children through a randomized trial, and pre-and-post measures of early childhood math skills and abilities. Second, using interviews at baseline and in a 9-month follow-up, the project will study the texting program’s impact on caregivers’ perceptions regarding the importance of math learning for young children. Third, the project will explore the impact of the text messaging program on health professionals’ understanding of math learning in early childhood by collecting qualitative data and assessing attitudes about the clinic’s role in supporting early math. Caregivers and clinic staff will also participate in focus groups to better understand impacts for each of these groups. The project will reach 1000 families, who will be randomly assigned to treatment or control groups through block-randomization, stratified by caregiver language and child’s age. This parent-informed project will build evidence toward new approaches to promoting early math in the pediatric clinic, an informal environment that can reach all families and can leverage innovative technology. Findings will be shared widely though a communication and engagement plan that includes children, caregivers, physicians and clinic staff, informal STEM educators, researchers, and policy makers.
DATE: -
TEAM MEMBERS: Lisa Chamberlain Susanna Loeb Jaime Peterson
resource project Exhibitions
Access to STEM information is unequal, with rural and poor communities often receiving the fewest public education science and science literacy opportunities. Rural areas also face unique STEM teaching and technology integration challenges. In fact, LatinX communities in rural areas are less likely to have access to educational resources and language supports available to LatinX communities in urban centers. This project will help address these inequities by engaging rural librarians, bilingual science communicators, polar scientists, and a technical team to create a series of five bilingual virtual reality (VR) experiences to enhance STEM understanding and appreciation. Project researchers will create a new channel for disseminating polar science, working first with rural Latinx communities in Wisconsin to create a new network between rural communities and university researchers. Involving rural librarians in the co-design of instruction process will produce new ways for rural libraries to engage their local communities and their growing Latinx populations with polar science learning experiences. Each of the five VR experiences will focus on a different area of research, using the captivating Arctic and Antarctic environments as a central theme to convey science. VR is a particularly powerful and apt approach, making it possible to visit places that most cannot experience first-hand while also learning about the wide range of significant research taking place in polar regions. After design, prototyping and testing are finished, the VR experiences will be freely available for use nationally in both rural and urban settings. Public engagement with science creates a multitude of mutual benefits that result from a better-informed society. These benefits include greater trust and more reasoned scrutiny of science along with increased interest in STEM careers, many of which have higher earning potential. The project team will partner with 51 rural libraries which are valued community outlets valuable outlets to improve science literacy and public engagement with science. The effects of this project will be seen with thousands of community members who take part in the testing of prototype VR experiences during development and scaled engagement through ongoing library programs utilizing the final VR experiences for years to come.

This project will create new informal STEM learning assessment techniques through combining prior efforts in the areas of educational data mining for stealth assessment and viewpoint similarity metrics through monitoring gaze direction. Results of the project contribute to the field of educational data mining (EDM), focusing on adopting its methods for VR learning experiences. EDM is a process of using fine grained interaction data from a digital system to support educationally relevant conclusions and has been applied extensively to intelligent tutors and more recently, educational videogames. This project will continue building on existing approaches by expanding to include the unique affordances of VR learning media, specifically gaze. The project will focus on predicting user quitting as well as assessing key learning goals within each experience and triangulate these predictive models with user observations and post-experience surveys. The eventual application of this foundational research would address the problem in assessing a learner using measures external to the experience itself (i.e., surveys) and instead provide new methods that instrument learners using only data generated by their actions within the learning context. These techniques will provide a new means for evaluating informal learning in immersive technology settings without need for explicit tagging. The findings from this project will enable a greater understanding of the relationship between a user’s experience and their learning outcomes, which may prove integral in the creation of educational interventions using VR technology.

This Innovations in Development project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to (a) advance new approaches to and evidence-based understanding of the design and development of STEM learning in informal environments; (b) provide multiple pathways for broadening access to and engagement in STEM learning experiences; (c) advance innovative research on and assessment of STEM learning in informal environments; and (d) engage the public of all ages in learning STEM in informal environments. This project is also supported by the Office of Polar Programs.
DATE: -
TEAM MEMBERS: Kevin Ponto David Gagnon
resource project Exhibitions
Escape rooms are an engaging and increasingly popular game format in which a team of players is “locked” in a room and challenged to solve a series of narrative-embedded puzzles encoded in the room’s artifacts in order to “escape” within a set period of time. The University of California Museum of Paleontology, with partners University of Kansas Natural History Museum and the California Academy of Sciences, aim to develop, evaluate, and disseminate a “serious game” (i.e., a game designed for a purpose other than entertainment) based on the escape room model. Our traveling/loanable pop-up escape room and associated extension activities will engage diverse families (ages 8 and up) in museums and libraries in solving a biomedical mystery that teaches fundamental concepts in biology, engages critical-thinking and collaboration skills, and stimulates interest in biomedical careers. STEM Escape will address NGSS-aligned content central to medical research – in particular, it will communicate basic concepts regarding evolutionary relationships, a topic with relevance to a wide variety of medical applications, such as determining the source of emerging infectious diseases, tracking the progression of disease within a host, and identifying new medicines. The project is designed to lay the groundwork for extended family interactions surrounding scientific content and biomedical careers. The immersive game will be supplemented by a set of solo and docent-led follow-up activities that reinforce key concepts and emphasize connections between players’ experience in the game and biomedical research careers. Learners will also receive takeaway media (e.g., activity book) that highlights a diverse set of NIH-funded researchers whose work directly relies on evolutionary patterns/processes. Caregivers will have the option of receiving a follow-up email with free at-home activities. The themed inflatable pop-up room will be wheelchair-accessible and all materials will be bilingual in English and Spanish. The STEM Escape experience will be developed with and for the diverse audiences visiting urban/suburban natural history museums and libraries, as well as with and for rural families, whom we will reach through rural libraries. The project will also produce and evaluate a suite of support materials to facilitate institutional adoption and deployment of the experience. Nine host sites across the country have committed to hosting the room (with an additional two sites in the planning stages), and after the life of the grant, the room will continue to make an impact as a rentable traveling exhibit. Long term, this project will improve the public’s understanding of medically relevant evolutionary content, increase interest in biomedical careers, particularly among underserved groups targeted, and improve our understanding of how immersive games can be used to serve educational objectives.
DATE: -
TEAM MEMBERS: Lisa White
resource project Public Programs
Libraries can provide unique opportunities for rural youth and communities. Phase III of the STAR Library Network will be a collaboration with 12 rural school districts in largely Latinx communities to address the challenges faced by rural youth, particularly English Language Learners. The project will use a coordinated and tested strategy to establish three learning pathways in public libraries: science learning spaces with exhibits, library programs, and science kits. These resources will provide learners with art-rich STEM learning opportunities.

Partners

Project partners include the Space Science Institute, the American Library Association (ALA), the Institute for Learning Innovation, and Twin Cities Public Television. The project will rely significantly on expertise from the Latinx community.

Project Plan

Building on an established librarian training model, the project will introduce library staff to the STEAM content and guide them in developing their own STEAM Learning Pathways. The project will draw on existing professional infrastructure from the ALA and the Institute for Learning Innovation’s established community of practice. SciGirls digital media, hands-on activities, family resources, and a training network will expand the depth and reach of the project.

The Research

The research team will study the efficacy of each pathway, alone and in tandem, on participant’s interest development and persistence. The research will use a mixed-methods design-based approach that involves questionnaires, interviews, and case studies. The results should yield a model for nationwide application and contribute insights for the formal education sector.

This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
DATE: -
TEAM MEMBERS: Lainie Castle