We present the assets that collaboration across a land grant university brought to the table, and the Winterberry Citizen Science program design elements we have developed to engage our 1080+ volunteer berry citizen scientists ages three through elder across urban and rural, Indigenous and non-Indigenous, and formal and informal learning settings.
DATE:
TEAM MEMBERS:
Katie SpellmanJasmine ShawChristine VillanoChrista MulderElena SparrowDouglas Cost
We used a youth focused wild berry monitoring program that spanned urban and rural Alaska to test this method across diverse age levels and learning settings.
DATE:
TEAM MEMBERS:
Katie SpellmanDouglas CostChristine Villano
The Arctic Harvest-Public Participation in Scientific Research (which encompasses the Winterberry Citizen Science program), a four-year citizen science project looking at the effect of climate change on berry availability to consumers has made measurable progress advancing our understanding of key performance indicators of highly effective citizen science programs.
DATE:
TEAM MEMBERS:
Angela LarsonKelly KealyMakaela Dickerson
Researchers at Arizona State University (ASU), in partnership with the Smithsonian Museum on Main Street (MoMS), the Arizona Science Center, and eight tribal and rural museum sites around Arizona, will help educate and empower communities living in the Desert Southwest on water sustainability issues through the creation of WaterSIMmersion, a mixed reality (MR) educational game and accompanying museum exhibit.
DATE:
-
TEAM MEMBERS:
Claire LauerScotty CraigMina Johnson-GlenbergMichelle Hale
resourceresearchMuseum and Science Center Exhibits
An adapted three-dimensional model of place attachment is proposed as a theoretical framework from which place-based citizen science experiences and outcomes might be empirically examined in depth.
DATE:
TEAM MEMBERS:
Julia ParrishYurong HeBenjamin Haywood
With support from rural communities and their libraries in the Four Corners Region in the Southwestern U.S., We are Water creates a place to meet and share stories about water, and explore and learn about water together. Designed for rural, Indigenous, and Latinx communities, stories, community voices and multiple ways of knowing are highlighted and woven throughout the exhibit and programs.
This poster was presented at the 2021 NSF AISL Awardee Meeting.
This Innovations in Development project is funded by the Advancing Informal STEM Learning program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. Specifically, this project connects Native Hawaiian youth ages 12-17 and their family members to STEM by channeling their cultural relationship with ʻāina, the sustaining elements of the natural world including the land, sea, and air. This project seeks to: broaden participation of Native Hawaiian youth who have been historically underrepresented in STEM; actively uphold Native Hawaiian ways of knowing and traditional knowledge; articulate the science rooted in cultural wisdom; and bring STEM into the lives of participants as they connect to the ʻāina. In partnership with six ʻāina-based community organizations across Hawaiʻi, this project will develop, implement, and study ʻāina-centered environmental education activities that explore solutions to local environmental problems. For example, in one module youth and their families will explore of a section of a nearby stream; identify and discuss the native, non-native, and invasive species; remove invasive species from a small section of the stream and make observations leading to discussions of unintended consequences and systemic impacts; ultimately, learners will meet at additional local waterways to engage in similar explorations and discussions, transferring their knowledge to understanding the impacts of construction on local streams and coral reefs. To this effort, the community-based organizations bring their expertise in preserving Hawaiian culture and sustainable island lifestyle, including rural and urban systems such as farming and irrigation traditions and the restoration of cultural sites. University of Hawai’i faculty and staff bring expertise in Environmental Science, Biology, Hawaiian Studies and Problem-Based Learning Curriculum Development. This project further supports organizational learning and sharing among the six community-based organizations. Grounded in Hawaiian ʻAʻo, where learning and teaching are the same interaction, community-based organizations will create a Community of Practice that will co-learn Problem-Based Learning pedagogy; co-learn and engage in research and evaluation methods; and share experiential and traditional knowledge to co-develop the ʻāina-based environmental education activities.
This project is uniquely situated to study the impact of community-led culturally relevant pedagogy on Hawaiian learners’ interests and connections to environmental science, and to understand ʻāina-based learning through empirical research. Research methods draw on Community-Based Participatory Research and Indigenous Research Methods to develop a collaborative research design process incorporated into the project’s key components. Community members, researchers, and evaluators will work together to examine the following research questions: 1) How does environmental Problem-Based Learning situate within ʻāina-based informal contexts?; 2) What are the environmental education learning impacts of ʻāina-based activities on youth and family participants?; and 3) How does the ʻāina-centered Problem-Based Learning approach to informal STEM education support STEM knowledge, interest and awareness? The evaluation will employ a mixed-methods participatory design to explore program efficacy, fidelity, and implementation more broadly across community-based sites, as well as program sustainability within each community-based site. Anticipated project outcomes are a 15-week organizational learning and sharing program with six ʻāina-based community organizations and 72 staff; the design and implementation of 18 activities to reach 360 youth and at least one of their family members; and the launch of an ʻāina-based STEM Community of Practice. The project’s research and development process for ʻāina-centered environmental education activities will be shared broadly and provide a useful example for other organizations locally and nationally working in informal settings with Native or Indigenous populations.
Informal learning institutions (ILIs) create opportunities to increase public understanding of science and promote increased inclusion of groups underrepresented in Science, Technology, Engineering, and Math (STEM) careers but are not equally distributed across the United States. We explore geographic gaps in the ILI landscape and identify three groups of underserved counties based on the interaction between population density and poverty percentage. Among ILIs, National Park Service lands, biological field stations, and marine laboratories occur in areas with the fewest sites for informal
The RASOR project is designed to increase engagement of students from rural Alaska communities in biomedical/STEM careers. Rural Alaskan communities are home to students of intersecting identities underrepresented in biomedical science, including Alaska Native, low-income, first generation college, and rural. Geographic isolation defines these communities and can limit the exposure of students to scientifically-minded peers, professional role models, and science career pathways. However these students also have a particularly strong environmental connection through subsistence and recreational activities, which makes the one-health approach to bio-medicine an intuitive and effective route for introducing scientific research and STEM content. In RASOR, we will implement place-based mentored research projects with students in rural Alaskan communities at the high school level, when most students are beginning to seriously consider career paths. The biomedical one-health approach will build connections between student experiences of village life in rural Alaska and biomedical research. Engaging undergraduate students in research has proved one of the most successful means of increasing the persistence of minority students in science (Kuh 2008). Furthermore, RASOR will integrate high school students into community-based participatory research (Israel et al. 2005). This approach is designed to demonstrate the practicality of scientific research, that science has the ability to support community and cultural priorities and to provide career pathways for individual community members. The one-health approach will provide continuity with BLaST, an NIH-funded BUILD program that provides undergraduate biomedical students with guidance and support. RASOR will work closely with BLaST, implementing among younger (pre-BLaST) students approaches that have been successful for retaining rural Alaska students along STEM pathways and tracking of post-RASOR students. Alaska Native and rural Alaska students are a unique and diverse population underrepresented in biomedical science and STEM fields.
This project will engage community members and youth in 13 rural, tribal, and Hispanic communities in the Four Corners Region of the south western U.S. with the science and cultural assets of water. Water is a significant and scarce resource in this geographic area. The Four Corners Region experiences low annual precipitation and high year-to-year fluctuations in water availability. Thus, water is a topic of great interest to community members, whose lives are shaped by water-related events such as drought, flood, and wildfires. Rural tribal, and Hispanic communities are often underserved with respect to science programming; their public libraries often function as the local science center. The project's inter-disciplinary team will develop, deploy, research, and evaluate an interactive traveling exhibit for small libraries, designed around regional water topics and complemented by interactive programming and community engagement events. Additionally, the team will build local capacity by fostering a community of practice among the host librarians, including participation through a support system--the STAR Library Network--to increase their science programming.
This project creates a traveling exhibit and complementary programming around water topics. Through an exhibit co-design model, communities will provide input in the exhibit development, identify water topics that are critical to them, and engage the multi-generational audiences. The exhibit merges the captivating attraction of water with the underlying science content and community context, giving patrons the opportunity to explore these topics through active learning stations, informational panels, citizen science-based activities, and an interactive regional watershed model. Artistic representations of water will be developed by community groups and incorporated into the exhibit as a dynamic display element.
Project goals are to:
Spark interest in and increase understanding of water as a critical resource and cultural asset across rural, tribal, and Hispanic communities in the Four Corners Region.
Increase availability of and access to engaging programming for underserved rural, tribal, and Hispanic communities focusing on the science and cultural aspects of water in the Four Corners Region.
Build capacity for libraries to implement water-focused science programs, and increase available science learning and science communication resources tailored to these informal learning settings.
Foster a Community of Practice (CoP) for participating librarians to support the development of their programming and content knowledge.
Advance the body of research on informal learning environments and their role in developing community members' science ecosystems and science identities, particularly in library settings.
The project team will rigorously assess the extent to which program approaches and components stimulate patrons' interest in science, increase science knowledge, and support building a personal science identity. The model is based on the STEM Learning Ecosystems Framework. Robust evaluation will guide the program development through a front-end needs assessment and iterative revision cycles of implementation strategies.
This project is funded by the National Science Foundation's (NSF's) Advancing Informal STEM Learning (AISL) program, which supports innovative research, approaches, and resources for use in a variety of learning settings.
This poster was presented at the 2019 AISL PI Meeting, and describes the the ongoing research questions and goals of the Ute STEM Project, which explores the integration of the traditional ecological knowledge (TEK) of the Ute Indians of Colorado and Utah and Western science, technology, engineering and math (STEM).
Northern ecosystems are rapidly changing; so too are the learning and information needs of Arctic and sub-Arctic communities who depend on these ecosystems for wild harvested foods. Public Participation in Scientific Research (PPSR) presents a possible method to increase flow of scientific and local knowledge, enhance STEM-based problem solving skills, and co-create new knowledge about phenology at local and regional or larger scales. However, there remain some key challenges that the field of PPSR research must address to achieve this goal. The proposed research will make substantial contributions to two of these issues by: 1) advancing theory on the interactions between PPSR and resilience in social-ecological systems, and 2) advancing our understanding of strategies to increase the engagement of youth and adults historically underrepresented in STEM, including Alaska Native and indigenous youth and their families who play an essential role in the sustainability of environmental monitoring in the high latitudes and rural locations throughout the globe. In particular, our project results will assist practitioners in choosing and investing in design elements of PPSR projects to better navigate the trade-offs between large-scale scientific outcomes and local cultural relevance. The data collected across the citizen science network will also advance scientific knowledge on the effects of phenological changes on berry availability to people and other animals.
The Arctic Harvest research goals are to 1) critically examine the relationship between PPSR learning outcomes in informal science environments and attributes of social-ecological resilience and 2) assess the impact of two program design elements (level of support and interaction with mentors and scientists, and an innovative story-based delivery method) on the engagement of underserved audiences. In partnership with afterschool clubs in urban and rural Alaska, we will assess the impact of participation in Winterberry, a new PPSR project that investigates the effect of changes in the timing of the seasons on subsistence berry resources. We propose to investigate individual and community-level learning outcomes expected to influence the ability for communities to adapt to climate change impacts, including attributes of engagement, higher-order thinking skills, and their influence on the level of civic action and interest in berry resource stewardship by the youth groups. Using both quantitative and qualitative approaches, we compare these outcomes with the same citizen science program delivered through two alternate methods: 1) a highly supported delivery method with increased in-person interaction with program mentors and scientists, and 2) an innovative method that weaves in storytelling based on elder experiences, youth observations, and citizen science data at all stages of the program learning cycle. This project is funded by the Advancing Informal STEM Learning (AISL) program, which seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. The project also has support from the Office of Polar Programs.
DATE:
-
TEAM MEMBERS:
Katie SpellmanElena SparrowChrista MulderDeb Jones