Skip to main content

Community Repository Search Results

resource project Media and Technology
This project will teach foundational computational thinking (CT) concepts to preschoolers by creating a series of mobile apps to guide families through sequenced sets of videos and hands-on activities. To support families at home it would also develop a new library model to build librarians' computational thinking content knowledge and self-efficacy so they can support parents' efforts with their children. Computational thinking is a an increasingly critical skill for learning and success in the workforce. It includes the ability to identify problems, brainstorm and generate solutions and processes that can be communicated and followed by computers or humans. There are few projects that introduce computational thinking to young children. Very little research has been done on the ways that parents can facilitate children's engagement in CT skills. And developing a model that trains and supports librarians to become virtual coaches of parents as they engage with their children in CT, will leverage and build the expertise of librarians. The project's target audience includes parents and children living in rural areas where access to CT learning may be very limited. Project partners include the EDC, a major research organization, the American Library Association, and BUILD, a national association that promotes collaborations across library, kindergarten readiness, and public media programming.

The formative research study asks: 1) What supports do parents of preschoolers in rural communities need in order to effectively engage in CT with their children at home? and 2) How can libraries in rural communities support joint CT exploration in family homes? The summative research study asks: 3) how can an intervention that combines media resources, mobile technology, and library supports foster sustained joint parent/child engagement and positive attitudes around CT? Researchers will develop a parent survey, adapting several scales from previously developed instruments that ask parents to report on children's use of CT-related vocabulary and CT-related attitudes and dispositions. Survey scales will assess librarians' attitudes towards CT, as well as their self-efficacy in supporting parents in CT in a virtual environment. During the formative study, EDC will pilot-test survey scales with 30 parents and 6 librarians in rural MS and KY. Analyses will be primarily qualitative and will be geared toward producing rapid feedback for the development team. Quantitative analyses will be used on parent app use, using both time query and back-end data, exploring factors associated with time spent using apps. The summative study will evaluate how the new media resources and mobile technology, in combination with the library virtual implementation model, support families' joint engagement with CT, and positive attitudes around CT. The researchers will recruit 125 low-income families with 4- to 5-year-old children in rural MS and KY to participate in the study. They will randomly assign families within each library to the full intervention condition, including media resources, mobile technology, and library support delivered through the virtual implementation model, or the media and mobile-technology-only condition. This design will allow researchers to understand more fully the additional benefit of library support for rural families' sustained engagement, and conversely, see the comparative impact of a media- and mobile-technology only intervention, given that some families might not be able to access virtual or physical library support.

As part of its overall strategy to enhance learning in informal environments, the Advancing Informal STEM Learning (AISL) program seeks to advance new approaches to, and evidence-based understanding of, the design and development of STEM learning in informal environments. This includes providing multiple pathways for broadening access to and engagement in STEM learning experiences, advancing innovative research on and assessment of STEM learning in informal environments, and developing understandings of deeper learning by participants. This project is co-funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.

This Innovations in Development award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
DATE: -
TEAM MEMBERS: Marisa Wolsky Heather Lavigne Jessica Andrews Janna Kook
resource project Public Programs
Abstract: We aim to disrupt the multigenerational cycle of poverty in our rural indigenous (18% Native American and 82% Hispanic) community by training our successful college students to serve as role models in our schools. Poverty has led to low educational aspirations and expectations that plague our entire community. As such, its disruption requires a collective effort from our entire community. Our Collective unites two local public colleges, 3 school systems, 2 libraries, 1 museum, 1 national laboratory and four local organizations devoted to youth development. Together we will focus on raising aspirations and expectations in STEM (Science, Technology, Engineering and Mathematics) topics, for STEM deficiencies among 9th graders place them at risk of dropping out while STEM deficiencies among 11th and 12th graders preclude them from pursuing STEM majors in college and therefore from pursuing well paid STEM careers. We will accomplish this by training, placing, supporting, and assessing the impact of, an indigenous STEM mentor corps of successful undergraduate role models. By changing STEM aspirations and expectations while heightening their own sense of self-efficacy, we expect this corps to replenish itself and so permanently increase the flow of the state's indigenous populations into STEM majors and careers in line with NSF's mission to promote the progress of science while advancing the national health, prosperity and welfare.

Our broader goal is to focus the talents and energies of a diverse collective of community stakeholders on the empowerment of its local college population to address and solve a STEM disparity that bears directly on the community's well-being in a fashion that is generalizable to other marginalized communities. The scope of our project is defined by six tightly coupled new programs: three bringing indigenous STEM mentors to students, one training mentors, one training mentees to value and grow their network of mentors, and one training teachers to partner with us in STEM. The intellectual merit of our project lies not only in its assertion that authentic STEM mentors will exert an outsize influence in their communities while increasing their own sense of self-efficacy, but in the creation and careful application of instruments that assess the factors that determine teens' attitudes, career interests, and behaviors toward a STEM future; and mentors' sense of self development and progress through STEM programs. More precisely, evaluation of the programs has the potential to clarify two important questions about the role of college-age mentors in schools: (1) To what degree is the protege's academic performance and perceived scholastic competence mediated by the mentor's impact on (a) the quality of the protege's parental relationship and (b) the social capital of the allied classroom teacher; (2) To what degree does the quality of the student mentor's relationships with faculty and peers mediate the impact of her serving as mentor on her self-efficacy, academic performance, and leadership skills?
DATE: -
TEAM MEMBERS: Steven Cox Ulises Ricoy David Torres
resource project Public Programs
The National Science Outreach Network will provide school children, teachers, and the general public with highly accessible interactive exhibits dealing with popular topics in science and technology. The network, initiated as a partnership between regional science centers and public libraries, will be modeled after the highly successful statewide Oregon Library Exhibits Network established in 1987. Through this smaller network, the Oregon Museum of Science and Industry, a nationally recognized pioneer in science exhibitry and outreach programming, circulates small hands-on exhibits to rural population centers through installations in public libraries, where school groups and families have free and convenient access. This national dissemination project will be initiated in five regional sites across the country (Colorado, Minnesota, New York, Tennessee, and Oregon) to further establish the model in rural, inner-urban, economically disadvantaged, and culturally diverse regions. With support from both the NSF and the regional networks, The National Science Outreach Network will design and duplicate six exhibits for circulation to dozens of local communities in each designated region. Over the next seven years, over six million individuals, many of whom do not currently frequent a local science center, will be introduced to popular science in a non-threatening, resource- rich setting. This will encourage further exploration and possible future visits to an accessible science center, and ultimately establish an ever-expanding network of museum and non-museum partners providing science and technology learning opportunities to millions of individuals each year.
DATE: -
TEAM MEMBERS: David Heil Loren Philbrick