
Paper ID #19605

Capturing the Computational Thinking of Families with Young Children in
Out-of-School Environments

Ms. Hoda Ehsan, Purdue University, West Lafayette (College of Engineering)

Hoda is a Ph.D. student in the School of Engineering Education, Purdue. She received her B.S. in me-
chanical engineering in Iran, and obtained her M.S. in Childhood Education and New York teaching
certification from City College of New York (CUNY-CCNY). She is now a graduate research assistant on
STEM+C project. Her research interests include designing informal setting for engineering learning, and
promoting engineering thinking in differently abled students in informal and formal settings.

Dr. Monica E Cardella, Purdue University, West Lafayette (College of Engineering)

Monica E. Cardella is the Director of the INSPIRE Institute for Pre-College Engineering Education and
is an Associate Professor of Engineering Education at Purdue University.

c©American Society for Engineering Education, 2017

Capturing the Computational Thinking of Families with Young Children in Out-of-School

Environments

Abstract

For the past two decades, researchers and educators have been interested in integrating

engineering into K-12 learning experiences. More recently, computational thinking (CT) has

gained increased attention in K-12 engineering education. Computational thinking is broader

than programming and coding. Some describe computational thinking as crucial to engineering

problem solving and critical to engineering habits of mind like systems thinking. However, few

studies have explored how computational thinking is exhibited by children, and CT

competencies for children have not been consistently defined. Hence developing and

implementing effective CT-related activities for children can be difficult. Therefore, exploring

what computational thinking looks like for children is critical.

Children can engage in, and learn to engage in computational thinking in both formal and

informal settings. In this study, we are interested in exploring what computational thinking might

look like in settings that approximate children’s everyday experiences. More specifically, in

order to investigate what computational thinking looks like when enacted by young children, we

are interested in observing children and their family members engaging in open-ended

engineering activities that are play-based. To accomplish this, we observed and video-recorded

5-8 year-old children and their families creating different structures together using large foam

blocks that are out for free play at a science center. Based on our observations and analysis of the

video-recordings, in this paper we report on the computational thinking practices and

competencies children and families demonstrated while engaged in engineering play. Our

findings can provide information needed to create a framework for promoting computational

thinking in young children in informal settings.

Introduction

Computational thinking and engineering education

Many believe that there are overlaps between engineering and computational thinking (NRC,

2011; Wing 2006). From a curricular standpoint, undergraduate engineering students frequently

learn programming and coding skills to use tools such as MATLAB in their work. Wing (2006)

argues that computational thinking is more than just programming and coding, and is not

thinking like computers. She believes computational thinking is the way that “humans, not

computers, think (p.35)” which requires conceptualizing problems when solving them. She

argues that computational thinking complements and combines engineering thinking and

mathematical thinking (Wing, 2006). According to her, computational thinking draws on

engineering thinking to solve problems and design systems that interact with humans and the real

world. Interacting with the real world requires thinking about design criteria and constraints –

such as safety and efficacy. Like engineers, computational thinkers involve in a process of

problem-solving (Computer Science Teacher Association & International Society for

Technology in Education, 2011).

Promoting problem solving and designing skills is a core focus of both undergraduate

engineering education and pre-college engineering education. P-12 engineering education also

has the potential to effectively impact student learning of different disciplines, increase

technological literacy, and boost student interest towards engineering (National Academy of

Engineering, 2009). In line with that, in 2009 the National Academy of Engineering (NAE 2009)

released a document emphasizing three critical areas for pre-college engineering education:

teaching engineering design, incorporating effective methods such as “computational methods”

for developing different content knowledge skills, and promoting engineering habits of mind.

Therefore, developing computational thinking is helpful in learning and strengthening pre-

college engineering.

Additionally, due to the growth of engineering-related careers, many current K-12 students will

end up working in fields that involve computing (Barr & Stephenson, 2011). At the same time,

Barr and Stephenson also discuss that today’s children will live in a life which is heavily

influenced by computing and requires computational thinking. Therefore, today’s children

should develop computational thinking competences, learn to solve problems computationally

and work with computational methods and tools early on. However, embedding computational

thinking in pre-college education requires practical approaches based on operational definitions

(Barr & Stephenson, 2011) suitable for the age of children. In order to develop suitable

computational thinking definitions and take practical approaches, characterizing what

computational thinking looks like in children is necessary.

Computational thinking in out-of-school environments

Families can play an important role in children’s learning experiences, because children spend

most of their time in out-of-school environments (Stevens & Bransford, 2007). These

environments include everyday settings like family activities or in designed spaces like museums

and science centers. Children are engaged in different activities with their families that may

provide them a wealth of learning opportunities. Through these learning opportunities, children

deeply engage in learning while interacting with family members (and others), build on their

prior knowledge and interest, develop stronger thinking, and finally reflect on their learning

experiences through sensemaking conversations with their families (Bell, Lewenstein, Shouse,

& Feder, 2009). Therefore, family interactions can support children in learning and developing

their thinking, skills and competencies.

While little research has studied learning engineering in out-of-school environments, some

evidence from the literature has shown that engineering interest, engineering knowledge and

engineering abilities may increase in these environments (Paulsen et al. 2015; Dorie et al. 2014;

Kotys-Schwartz, Besterfield-Sacre, & Shuman, 2011). As previously mentioned, computational

thinking has a strong connection with engineering and engineering thinking. Hence we believe

we may be able to see development of computational thinking in Out-of-School environments.

Purpose of the Study

This study is part of an NSF-funded project (Hynes et al. 2016). One aspect of this project looks

at K-2 students’ computational thinking competencies in integrated STEM informal experiences.

In earlier phases of the project, we conducted research to develop a set of definitions of CT

competencies that can be observed when enacted by children (Dasgupta, Rynearson, Purzer,

Ehsan, & Cardella, 2017; INSPIRE Definitions, 2017). For this study, we are focusing on seven

of these competencies: Abstraction, Algorithms and Procedures, Debugging, Problem

Decomposition, Parallelization, Pattern Recognition and Simulation. These competencies were

then synthesized into three phases of an iterative computational thinking process consisting of

(1) Problem Scoping, (2) Development, and (3) Implementing and Improving. Each of the phases

involves multiple CT competencies as noted below:

Problem Scoping:

- Problem Decomposition

- Abstraction

- Pattern Recognition

Development:

- Algorithms & Procedures

- Parallelization

- Abstraction

- Pattern Recognition

Implementing & Improving:

- Troubleshooting/Debugging

- Problem Decomposition

- Simulation, Automation, Evaluation

- Pattern Recognition

For this study, our purpose was to investigate which CT competencies can be observed when

children and their families are engaged in an engineering design task at a science center.

Methods

Study Procedure

The study was conducted at a science center in the Midwest. Families with K-2–aged children

who visited the science center were invited to participate in the study. They were given an

engineering design task, and were asked to build their solution using big foam blocks (see Table

1). The task (see Figure 1) was presented them on signs that served as a proxy for exhibit

signage.

We also provided the adults (i.e. parents and other family members) with information about

computational thinking by hanging signage at multiple locations in the big foam block exhibit

space. The families were given 30 minutes to read the task, discuss it with their children, and

develop their solutions. At the end, we interviewed both adults and children about their

experiences during this task, and previous experiences that they considered to be similar to the

activity.

Table 1. Pictures of Playgroud created by Families.

Playground 1 Playground 2 Playground 3

Data Sources

To date, five families have participated in this study. In this paper, we focus on three cases to

begin to map out the space of skills and competencies that children and families can engage in,

without making claims about how common it is for children or families to engage in these

competencies. For this study, data sources include video recordings and field notes collected

while the families engaged in the activity, audio-recordings of the interviews with the adults and

children and transcripts of the video and audio recordings. .

Data Analysis

To analyze the data, we created a codebook. The codebook was organized based on the three

phases of Problem Scoping, Development, and Implementing and Improving. The codebook

included the definitions of CT competencies as well as the abbreviation for each competency as a

code. In order to analyze the video data, we followed the analytical model suggested by Powell,

Francisco, and Maher (2003). The model consists of seven non-linear phases:

1. Viewing attentively the video data

2. Describing the video data

3. Identifying critical events

4. Transcribing

5. Coding

6. Constructing a storyline

7. Composing a narrative.

Figure 1: The text of the design challenge that was presented to the families.

Findings

Analyzing our video data provides us with insights of computational thinking competencies that

may be observed when families of 5-8 year-old children engage in an engineering design

activity. In this section, we first provide general examples of what we have seen occurring

among all three families. Then a narrative of one family is included to provide a more complete

description of what computational thinking can look like in a series of family interactions.

General Examples

The table below is organized as three phases of a computational thinking approach to problem

solving mentioned above. The CT competencies associated with each phase, their definitions and

examples are presented in Table 2. Table 2 consists of pictures of the structures that the families

created. From the table, we see that the three families engaged in activities that mapped to all

seven computational thinking competencies.

Table 1. CT Problem solving phases

Problem Scoping

CT Competency Definition General Example(s)

Problem

Decomposition

Breaking down data,

processes or problems into

smaller and more

manageable components to

solve a problem.

Identifying the sub-components of

the task by asking questions like:

Where to build? How? What to do?

Who should do what? What we

need?

Pattern Recognition Observing patterns, trends

and regularities in data.

Asking questions about/talking

about what the playground might

include based on real life examples

of playgrounds.

Abstraction Identify and utilize the

structure of concepts/main

ideas.

Talking about the main parts of the

playgrounds by considering

similarities across real-life examples

(e.g. all playgrounds have fences

and something to play with).

Development

CT Competency Definition General Example(s)

Algorithms and

procedures

Following, identifying,

using, and creating an

ordered set of instructions.

(ie, through selection,

iteration and recursion)

Selecting appropriate blocks in

order to build parts of the

playground.

Building the structure block by

block using adult’s directions.

Pattern Recognition Observing patterns, trends

and regularities in data.

Selecting blocks and putting them

together based on their experiences

of what has and has not worked

well.

Abstraction Identify and utilize the Identifying the main characteristics

structure of concepts/main

ideas.

of parts of the playground and

selecting blocks to build something

similar (e.g. using a circular block

as a wheel toy).

Parallelization Simultaneously processing

smaller tasks to more

efficiently reach a goal.

Dividing the work of building two

parts of the playground

simultaneously (e.g. one builds the

window on one wall, the other

builds the next wall).

Implementing and Improving

CT Competency Definition General Example(s)

Debugging Identifying and addressing

problems that inhibit

progress toward task

completion

Noticing a problem in the structure

and trying to solve it (e.g. re-

structuring the wall so that the dog

may jump over it)

Pattern Recognition Observing patterns, trends

and regularities in data.

Finding the cause of the problem

and solving it using what they have

experienced before while playing.

Problem

Decomposition

Breaking down data,

processes or problems into

smaller and more

manageable components to

solve a problem.

Breaking down the problem and its

causes in order to solve the problem.

Simulation Developing a model or a

representation to imitate

natural and artificial

processes.

Playing with/trying out the

playground they made to imitate

how a pet might use the playground.

Computational Thinking Enacted by One Family

In Table 3, we present a narrative of the experience of one family as they worked on the activity.

The narrative allows us to see when the different computational thinking competencies were

enacted, the sequence of the family’s process, and a concretized version of computational

thinking during a family design activity. The family consisted of a mother and her children John

(7-years old) and Daniel (4-years old).

Table 2. Examples of Families Engaging in CT.

Narrative Computational Thinking

The mother begins by reading the task

statement aloud to her children and describing

the criteria to her children. She then starts the

conversation below:

Mother: so, what is your plan John?

John: I’m gonna build a fence and then toys.

Mother: what the fence is gonna look like?

The family begin to break down the problem

in a way that helps them define the scope of

the problem better. In particular, John

identifies the fence and the toys as the two

major components of the task (Problem

Scoping-Problem Decomposition). In

addition, we see that John is able to imagine

John ; A large rectangle or may be a circle.

Maybe, I can use this [pointing to a circular

block on the top).

Mother: Okay where is gonna be?

John : Over there.

Mother:It is gonna be like this? Well, where

we are going to start?

John: Right here.

the playground in a yard and focus on features

that are common for playgrounds (Problem

Scoping-Pattern Recognition &

Abstraction). He then focuses on important

details of the fence and then based on the

fences he might have seen in the real life, he

realizes that the fence should have a

rectangular or circular shape (Development-

Pattern Recognition & Abstraction).

Then, the children look for some blocks that

they might need by pointing out to and/or

bringing the blocks. When John confirms the

selection of the blocks, the mother asks the

children where they want to place the base of

the fence. Then, John tells the mother and

Daniel where to place the rest of the blocks.

Children build the fence by the ordered set of

instruction that John provides. The ordered set

of instruction applies to selecting the blocks

and then building the fence. This is an

example of Development- Algorithm.

John builds the fence, using the same

rectangular blocks on top of each other. He

uses a cylindrical block as the connector, and

connect the blocks. Then, he uses the

connectors for other parts as well.

John identifies a pattern of the connector

holding the blocks together, so he continues

using them for building the fence. This is an

example of Development-Pattern

Recognition.

During building the structure, the mother

suggest to build a door or a gate in a corner of

the fence, but John responses that they can

also build a wall.

Both John and his mother makes connection

to the yards in real life by mentioning its

possible components like gate, fence or a

wall. This is an example of Problem

Scoping- Abstraction.

In the process of making the fence, Daniel

puts several blocks on the top of each which

make that fence taller than others. John

disagrees and tells his sibling that “it should

be the same size. Look at this. You should

take one, and then another one.”

The child knows that based on criteria, they

should create a pattern, and building one of

the fence taller than others does not make a

pattern (Implementing and Improving-

Pattern Recognition). Then, he intends to

solve this problem (debugging) by taking out

two blocks.

John builds stairs using few small rectangular

blocks.

Mother: what is this for?

John: umm, I don’t know, but it is stairs.

Mother: is it a toy or something that the

puppy can play with?

John: I don’t know. It is just stairs.

The mother tries to convince him that the

stars would not work, because the puppy can

jump over it and get out of the fence. Daniel

acts out like a puppy and jump on the stairs

and then over the fence.

The child builds a structure and calls it stairs

because he know stairs look like that. This is

an example of Development-Abstraction,

and Implementing and Improving-

simulation. The mother tries to encourage

them to do Implementing and Improving -

Debugging by showing the problem, and the

second child Implementing and Improving-

Simulate how the problem would look like.

Towards the end, the mother suggests to build

a gate or a door. She describes the door as “it

opens and we can let him [the puppy] in.”

Daniel nods and gets two blocks which look

like hinges and a connector, and builds the

gate.

He was able to identify the concept of a door

being open and closed, focus on the important

information of the concept, and utilize that

information in his structure by creating

something a hinge. This is an example of

Development-Abstraction.

Discussion

The examples we have seen in our data suggest that children are capable of engaging in

computational thinking when they working on engineering tasks with their families. The process

of computational thinking they demonstrated is iterative not linear. We have seen examples of all

seven of the competencies we focused on in the data we collected. Below, we provide further

discussion of pattern recognition, abstraction, and debugging. We now focus on these three

competencies because pattern recognition, abstraction, and debugging were repeated in more

than one phases. Problem decomposition occurred quite the same in both phases of problem

scoping and improving and implementing. Both abstraction and pattern recognition were seen

slightly differently in different phases.

In our study, Pattern recognition happened in two different ways. In the problem scoping

phase, it was embedded into abstraction. This will be discussed in the next paragraph. Pattern

recognition in both development and implementing and improving phases occurred when

children used their experiences of failure and success in working with blocks to develop or

improve the structure. They recognized which blocks went on top of each other better and were

stable and look the way they want to.

In our dataset, Abstraction happened in both problem scoping and development phases.

Abstraction in both phases can be observed through pattern recognition, but in different levels.

This is consistence with Bennett and Müllar’s interpretations of abstraction (Bennett & Müller,

2010). They argue that through abstraction, children are first able to identify features based on

the overall appearance of similar items like the patterns they see in similar objects. An example

for the task of this study would be that based on what children saw in most of the real-life

playgrounds (patterns), they realized they should include a fence/wall and gates around the

playground and toys or play equipment in the middle. Planning to build a similar playground was

abstraction. Then, they recognized independent features of an object and later they considered

more features of the objects. This is what happened in the development phase. In the

development phase, children focused on the main details of the part they decide to build (e.g. a

gate). They recognized the main details from the similarities they see of that part in the real-life

examples (patterns). Then based on those details, they selected and used the blocks to build a

structure very similar to the real-life one.

We also noticed that in all the examples seen in the implementing and improving phase, pattern

recognition, problem decomposition and simulation were all a sub-set of debugging. Through

debugging, children noticed the cause of the problem in their structure, and then they enacted the

three other computational thinking competencies to solve the problem.

Conclusion

Our findings provide evidence that 5-8 year-old children are capable of enacting computational

thinking competencies when interacting with an adult in solving engineering tasks. All seven of

the CT competencies of abstraction, algorithms and procedures, debugging, problem

decomposition, parallelization, pattern recognition and simulation were observed happening in

this study. We expect that the findings are not limited to this task and study, and can be seen

occurring in other engineering design tasks. Because we were able to capture examples of

computational thinking in our study, we believe that further studies of computational thinking

amongst 5-8 year-old children is a productive direction for future research as well as a

productive direction for interventions aimed at promoting CT competencies in children. In

addition, further research on how parents’ and other adults’ interactions with children promotes

computational thinking in children should be conducted.

Acknowledgements

This material presented in this symposium is based upon work supported by the National Science

Foundation Division of Research on Leaning under Grant No. DRL 1543175. Any opinions,

findings and conclusions or recommendations expressed in this material are those of the authors

and do not necessarily reflect the views of the National Science Foundation. We would also like

to acknowledge the contribution of the STEM+C research team at INSPIRE, Purdue University,

Imagination Station as well as all the families who participated in this study.

References

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: what is Involved

and what is the role of the computer science education community? Acm Inroads, 2(1),

48-54.

Bell, P., Lewenstein, B., Shouse, A. W., & Feder, M. A. (2009). Learning science in informal

environments: People, places, and pursuits: National Academies Press.

Bennett, J., & Müller, U. (2010). The development of flexibility and abstraction in preschool

children. Merrill-Palmer Quarterly, 56(4), 455-473.

Computer Science Teacher Association (CSTA), & International Society for Technology in

Education (ISTE). (2011). Computational Thinking Teacher Resources (Second ed.).

Dorie, B. L., Cardella, M.E., Svarovsky, G. (2014, June). Capturing the Design Thinking of

Young Children Interacting with a Parent. In Proceedings of the American Society for

Engineering Education Annual Conference & Exposition, Indianapolis, IN.

Dasgupta, A., Rynearson, A., Purzer, S., Ehsan, H., & Cardella, M. (2017, June). Computational

thinking in Kindergarten: Evidence from student artifacts. In Proceedings of the

American Society for Engineering Education Annual Conference & Exposition,

Columbus, OH.

Hynes, M. M.,Moore, T., Cardella, M., Purzer, Tank, K., Meneske, M., & Brophy, S. (2016,

June). Inspiring Computational Thinking in Young Children’s Engineering Design

Activities (Fundamental). In proceeding of the 2016 American Society for Engineering

Education Annual Conference & Exposition, New Orleans, LA.

Kotys-Schwartz, D., Besterfield-Sacre, M., & Shuman, L. (2011, October). Informal learning in

engineering education: Where we are—Where we need to go. In Frontiers in Education

Conference (FIE)

National Research Council. (2011). Committee for the Workshops on Computational Thinking:

Report of a workshop of pedagogical aspects of computational thinking. Washington,

D.C.

National Academy of Engineering and National Research Council, 2009, Engineering in K- 12

Education: Understanding the Status and Improving the Prospects.Washington, D.C.:

The National Academies Press.

Paulsen, Christine A., Monica E Cardella, Tamecia R Jones and Marisa Wolsky “Informal

Pathways to Engineering: Interim Findings from a Longitudinal Study,” Proceedings of

the American Society for Engineering Education Annual Conference & Exposition,

Seattle, WA, June 2015.

Powell, A. B., Francisco, J. M., & Maher, C. A. (2003). An analytical model for studying the

development of learners’ mathematical ideas and reasoning using videotape data. The

journal of mathematical behavior, 22(4), 405-435.

Purdue University's INSPIRE Research Institute for Pre-College Engineering

(2017). Computational Thinking Competencies: INSPIRE Definitions. Unpublished

resource.

Stevens, R., & Bransford, J. (2007). The LIFE Center's lifelong and lifewide diagram. Learning

in and out of school in diverse environments: Life-long, life-wide, life-deep. Seattle, WA:

University of Washington Center for Multicultural Education.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35.

