

Youth and Virtual Advisory Board Input

Capacity-building

WHO WE ARE DEFINES OUR WORK AND HOW OTHERS

DREGON MUSEUM OF SCIENCE AND INDUSTRY

Project Overview

Engage families in engineering design challenges through a sustainability and biomimicry lens. Families advance their engineering proficiencies while learning from nature to create a livable future.

Primary Audiences

Public Audience: Families with children, particularly with girls ages 9-14 Professional Audience: Exhibit Developers, Designers and Facilitators

Exhibit

Front-end evaluation

I don't want to have an ideal world; my perfect world is living here...in this world you learn from your mistakes.

Narrative and graphic input

Exhibit big Idea

Biomimicry engages us with nature's strategies to design solutions for the challenges we face in our own communities and around the world.

Prototyping

Research

The C-PIECE Study and Framework Collaborative Practices at Interactive Engineering Challenge Exhibits

Defining a Problem		Beginning	Intermediate	Informed
	Orientation	Immediately attempts challenge	Reads or listens to information provided Explores resources Watches others Prematurely attempts challenge	Delays design decisions
	Design Preparation		Discusses/plans design other than materials Brainstorms ideas identifies/assigns roles	Considers benefits and trade-offs of materials
	Goal Orientation	Perceives goal as straight forward		Discusses questions/ideas about the process with others Mentifies/describes criteria or constraints Relates content to prior experience States a goal Defines problem within context

	Beginning	Intermediate	Informed
	• Runs through single cycle • Confounds variables	Adjusts testing conditions Completes multiple tests	Tests specific variables Completes multiple iterations Continues testing
	Interpretation	Identifies pros/cons of design Diagnoses issues Describes what happened	• Explains results
and a	Subjectively assesses goal completion	Qualitatively assesses goal completion	Compares to own past performance or record Quantitatively assesses goal completion
	Applies casual modifications Makes decisions based on aesthetic or superficial characteristics	Applies directed modifications	Focuses on problematic subsystems Brainstorms ways to make successful prototype better Optimizes design and materials

This research helps professionals support families' exercise of informed engineering practices.

Project collaborators

Designing Our Tomorrow is a collaborative project, with team members, partners, and advisors from the following institutions: • Oregon Museum of Science and Industry (OMSI) • Adelante Mujeres • Biomimicry Institute • Fleet Science Center • Arizona State University • Exploratorium • Museum of Science Boston • Oakland Museum of California • Oregon State University • Rockman et al • Science Museum of Minnesota • TERC • University of Notre Dame • Yellow Cow Consulting • Universidad Autónoma de Yucatán • Schumacher Center for a New Economics • Georgia Tech

Designing Our Tomorrow—Mobilizing the next generation of engineers is made possible with funding from the National Science Foundation under Grant No. DRL-1811617

Project details can be found at: www.engineerourtomorrow.com

PI: Marcie Benne, PhD, mbenne@omsi.edu Co-PI: Verónika Núñez, vnunez@omsi.edu