Skip to main content

Community Repository Search Results

resource research Media and Technology
This study provides a historical overview of the development of the instructional television as a tool within the context of science education. The technology was traced from its beginning as experiments in public service broadcasting by universities and television networks, though closed circuit, cable, and commercially produced science-related programming. The use of the technology as a teaching tool is examined in terms of the concept of scientific literacy and the means by which instructional television helped to accomplish the goals of scientific literacy.
DATE:
TEAM MEMBERS: Kenneth King
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting held in Washington, DC. It describes a project that uses museum-based exhibits, girls' activity groups, and social media to enhance participants' engineering-related interests and identities.
DATE:
resource research Media and Technology
This paper illustrates the intensified engagement that youth are having with digital technologies and introduces a framework for examining digital fluency – the competencies, new representational practices, design sensibilities, ownership, and strategic expertise that a learner gains or demonstrates by using digital tools to gather, design, evaluate, critique, synthesize, and develop digital media artifacts, communication messages, or other electronic expressions. A primary goal of this paper is to identify promising perspectives through which learning is conceptualized, and to share the
DATE:
TEAM MEMBERS: Sherry Hsi
resource research Media and Technology
Interest is a powerful motivator; nonetheless, science educators often lack the necessary information to make use of the power of student-specific interests in the reform process of science curricula. This study suggests a novel methodology, which might be helpful in identifying such interests--using children's self-generated questions as an indication of their scientific interests. In this research, children's interests were measured by analyzing 1555 science-related questions submitted to an international Ask-A-Scientist Internet site. The analysis indicated that the popularity of certain
DATE:
TEAM MEMBERS: Ayelet Baram-Tsabari Ricky Sethi Lynn Bry
resource research Media and Technology
In order to name and classify a plant they see, children use their existing mental models to provide the plant with a name and classification. In this study pupils of a range of ages (5, 8, 10, and 14 years old) were presented with preserved specimens of six different plants (strictly, five plants and a fungus) and asked a series of questions about them. Their responses indicate that pupils of all ages mainly recognise and use anatomical features when naming the plants and explaining why they are what they are. However, older pupils are more likely to also use habitat features. For both girls
DATE:
TEAM MEMBERS: Sue Dale Tunnicliffe Michael Reiss
resource research Media and Technology
This poster was presented at the 2014 AISL PI Meeting held in Washington, DC. It discusses the second season of SciGirls, a multimedia project designed to encourage and empower more girls to pursue careers in STEM.
DATE:
TEAM MEMBERS: Twin Cities Public Television Rita Karl
resource research Media and Technology
This poster was shared at the 2014 AISL PI meeting, August 20-22. It describes the goals and early (pre-award) work on the GrACE project. This project aims to teach computational thinking and fostering computer science attitude change among middle school students through a procedurally generated puzzle game.
DATE:
TEAM MEMBERS: Northeastern University Gillian Smith Casper Harteveld
resource project Media and Technology
Northeastern University will design, test, and study GrACE, a procedurally generated puzzle game for teaching computer science to middle school students, in partnership with the Northeastern Center for STEM Education and the South End Technology Center. The Principal Investigators will study the effect of computer generated games on students' development of algorithmic and computational thinking skills and their change of perception about computer science through the game's gender-inclusive, minds-on, and collaborative learning environment. The teaching method has potential to significantly advance the state of the art in both game-based learning design and yield insights for gender-inclusive teaching and learning that could have broad impact on advancing the field of computer science education. Development and evaluation of GrACE will consist of two, year-long research phases, each with its own research question. The first, design and development, phase will focus on how to design a gender-inclusive, educational puzzle game that fosters algorithmic thinking and positive attitude change towards computer science. The content generator will be created using Answer Set Programming, a powerful approach that involves the declarative specification of the design space of the puzzles. The second phase will be an evaluation that studies, by means of a mixed-methods experimental design, the effectiveness of incorporating procedural content generation into an educational game, and specifically whether such a game strategy stimulates and improves minds-on, collaborative learning. Additionally, the project will explore two core issues in developing multiplayer, collaborative educational games targeted at middle school students: what typical face-to-face interactions foster collaborative learning, and what gender differences exist in how students play and learn from the game. The project will reach approximately 100 students in the Boston area, with long-term goals of reaching students worldwide, once the game has been tested with a local audience. Results of the project will yield a new educational puzzle game that can teach algorithmic thinking and effect attitude change regarding computer science. Through the process of creating a gender-inclusive game to teach computer science, it will provide guidelines for future educational game projects. Beyond these individual project deliverables, it will improve our understanding of the potential for procedural content generation to transform education, through its development of a new technique for generating game content based on supplying educational objectives.
DATE: -
TEAM MEMBERS: Northeastern University Gillian Smith Casper Harteveld
resource research Media and Technology
Research chemists from the Center for Enabling New Technologies Through Catalysis (CENTC) worked collaboratively with the Liberty Science Center (LSC) to develop a hands-on activity to educate visitors about how small molecules derived from petroleum feedstocks are used to make larger molecules that are then utilized in the production of everyday consumer goods. Researchers, faculty, and students provided the chemistry content and LSC worked with Blue Telescope Studios to create a user-friendly program for the Ideum Multitouch Table. The resulting “Molecule Magic,” an engaging and intuitive
DATE:
TEAM MEMBERS: Center for Enabling New Technology Through Catalysis (CENTC) Abby O'Connor
resource project Media and Technology
Informal Community Science Investigators (iCSI) creates a network of four geographically diverse informal science institutions working together on strategies to engage youth ages 10-13 through location based augmented reality (AR) games played on smartphones. These high-interest, kid-friendly games will be used by families visiting the institutions and by youth who enroll in more intensive summer camp programs. Using AR games, participants will engage in playful but scientifically-grounded investigations drawing on each institution's research, exhibits, and natural spaces. For example, a botanical garden might engage young visitors through AR games with themes related to native and invasive species, while a zoo might create a game experience focusing on illegal wildlife trade. Participants in the iCSI summer camp program will have more intensive experiences, including work with the host institution's scientists, opportunities to develop original augmented reality games, and experiences with game-related service learning and citizen science programs. For both target groups (families and campers), the location specific games build understanding of both the institution's mission and the broader realm of scientific research and application. The project will test the notion of participants as "learner hero," the link between game play and the individual's development of competency, autonomy and the relationship to real world experience, in this case through community action on the subject of the game developed. To that end, participants will be encouraged to extend their involvement through related investigations on site and participation in community activities and projects that can be done at home. Social media tools such as Facebook and web sites managed by the host institutions will provide recognition for this extended engagement, helping participants maintain ties to the program. Additionally, program resources provide assistance to adult family members in nurturing and sustaining youth interest in STEM activities and careers. A major effort of the project will be development of a new software infrastructure called TaleBlazer for the augmented reality game that will enable teachers and students to develop their own game that incorporates real data collection and scientific model building. The new platform will enhance the game play platform MITAR developed with NSF funding.
DATE: -
TEAM MEMBERS: Robert Coulter Eric Klopfer
resource evaluation Media and Technology
The Educational Gaming Environments group (EdGE) at TERC embarked on a research project to study serious online collaborative gaming environments as a vehicle for engaging the public with National Science Digital Library (NSDL) resources. The goal of the project was two-fold: to design and test serious games that use a prototype virtual resource center; and to build a community and framework for creating a Serious Games Pathway to deliver NSDL resources into this burgeoning community with the aim of facilitating STEM learning. As part of this endeavor, the external evaluators under the
DATE:
TEAM MEMBERS: TERC John Fraser
resource research Media and Technology
This paper provides a brief overview of the ideas and principles underlying the connected learning movement, highlighting examples of how libraries are boosting 21st-century learning and promoting community development by partnering with a range of organisations and individuals to incorporate connected opportunities into their programmes. The connected learning movement supports interest-driven, peer-supported, and academically oriented learning for youth by promoting the core values of equity, participation, and social connection. By connecting formal and informal learning organisations with
DATE:
TEAM MEMBERS: Ake Nygren